AIMC Topic: Decision Support Techniques

Clear Filters Showing 21 to 30 of 429 articles

Optimized machine learning framework for cardiovascular disease diagnosis: a novel ethical perspective.

BMC cardiovascular disorders
Alignment of advanced cutting-edge technologies such as Artificial Intelligence (AI) has emerged as a significant driving force to achieve greater precision and timeliness in identifying cardiovascular diseases (CVDs). However, it is difficult to ach...

Stress hyperglycemia ratio and machine learning model for prediction of all-cause mortality in patients undergoing cardiac surgery.

Cardiovascular diabetology
BACKGROUND: The stress hyperglycemia ratio (SHR) was developed to reduce the effects of long-term chronic glycemic factors on stress hyperglycemia levels, which was associated with adverse clinical outcomes. This study aims to evaluate the relationsh...

Predicting major adverse cardiac events in diabetes and chronic kidney disease: a machine learning study from the Silesia Diabetes-Heart Project.

Cardiovascular diabetology
BACKGROUND: People living with diabetes mellitus (DM) and chronic kidney disease (CKD) are at significantly high risk of cardiovascular events (CVEs), however the predictive performance of traditional risk prediction methods are limited.

Predicting cardiovascular outcomes in Chinese patients with type 2 diabetes by combining risk factor trajectories and machine learning algorithm: a cohort study.

Cardiovascular diabetology
BACKGROUND: Cardiovascular complications are major concerns for Chinese patients with type 2 diabetes. Accurately predicting these risks remains challenging due to limitations in traditional risk models. We aimed to develop a dynamic prediction model...

Prognosis modelling of adverse events for post-PCI treated AMI patients based on inflammation and nutrition indexes.

BMC cardiovascular disorders
OBJECTIVE: This study aimed to evaluate the predictive performance of inflammatory and nutritional indices for adverse cardiovascular events (ACE) in patients with acute myocardial infarction (AMI) after percutaneous coronary intervention (PCI) using...

Early Prediction of Cardio Vascular Disease (CVD) from Diabetic Retinopathy using improvised deep Belief Network (I-DBN) with Optimum feature selection technique.

BMC cardiovascular disorders
Cardio Vascular Disease (CVD) is one of the leading causes of mortality and it is estimated that 1 in 4 deaths happens due to it. The disease prevalence rate becomes higher since there is an inadequate system/model for predicting CVD at an earliest. ...

Integrating intuitionistic fuzzy and MCDM methods for sustainable energy management in smart factories.

PloS one
Improving energy efficiency is crucial for smart factories that want to meet sustainability goals and operational excellence. This study introduces a novel decision-making framework to optimize energy efficiency in smart manufacturing environments, i...

Developing a decision support tool to predict delayed discharge from hospitals using machine learning.

BMC health services research
BACKGROUND: The growing demand for healthcare services challenges patient flow management in health systems. Alternative Level of Care (ALC) patients who no longer need acute care yet face discharge barriers contribute to prolonged stays and hospital...