AIMC Topic: Decision Trees

Clear Filters Showing 61 to 70 of 547 articles

An automated approach to identify sarcasm in low-resource language.

PloS one
Sarcasm detection has emerged due to its applicability in natural language processing (NLP) but lacks substantial exploration in low-resource languages like Urdu, Arabic, Pashto, and Roman-Urdu. While fewer studies identifying sarcasm have focused on...

ST-Tree with interpretability for multivariate time series classification.

Neural networks : the official journal of the International Neural Network Society
Multivariate time series classification is of great importance in practical applications and is a challenging task. However, deep neural network models such as Transformers exhibit high accuracy in multivariate time series classification but lack int...

A fact based analysis of decision trees for improving reliability in cloud computing.

PloS one
The popularity of cloud computing (CC) has increased significantly in recent years due to its cost-effectiveness and simplified resource allocation. Owing to the exponential rise of cloud computing in the past decade, many corporations and businesses...

XGBoost as a reliable machine learning tool for predicting ancestry using autosomal STR profiles - Proof of method.

Forensic science international. Genetics
The aim of this study was to test the validity of a predictive model of ancestry affiliation based on Short Tandem Repeat (STR) profiles. Frequencies of 29 genetic markers from the Promega website for four distinct population groups (African American...

Advancement of post-market surveillance of medical devices leveraging artificial intelligence: Patient monitors case study.

Technology and health care : official journal of the European Society for Engineering and Medicine
BackgroundHealthcare institutions throughout the world rely on medical devices to provide their services reliably and effectively. However, medical devices can, and do sometimes fail. These failures pose significant risk to patients.ObjectiveOne way ...

Comparison of machine learning methods for Predicting 3-Year survival in elderly esophageal squamous cancer patients based on oxidative stress.

BMC cancer
BACKGROUND: Oxidative stress process plays a key role in aging and cancer; however, currently, there is paucity of machine-learning model studies investigating the relationship between oxidative stress and prognosis of elderly patients with esophagea...

Development of machine learning models for predicting depressive symptoms in knee osteoarthritis patients.

Scientific reports
Knee osteoarthritis (KOA) combined with depressive symptoms is prevalent and leads to poor outcomes and significant financial burdens. However, practical tools for identifying at-risk patients remain limited. A robust prediction model is needed to ad...

A novel prediction model for the prognosis of non-small cell lung cancer with clinical routine laboratory indicators: a machine learning approach.

BMC medical informatics and decision making
BACKGROUND: Lung cancer is characterized by high morbidity and mortality due to the lack of practical early diagnostic and prognostic tools. The present study uses machine learning algorithms to construct a clinical predictive model for non-small cel...

Prediction of acute respiratory infections using machine learning techniques in Amhara Region, Ethiopia.

Scientific reports
Many studies have shown that infectious diseases are responsible for the majority of deaths in children under five. Among these children, Acute Respiratory Infections is the most prevalent illness and cause of death worldwide. Acute respiratory infec...