AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Diabetes Mellitus, Type 2

Showing 81 to 90 of 378 articles

Clear Filters

Computational approaches for clinical, genomic and proteomic markers of response to glucagon-like peptide-1 therapy in type-2 diabetes mellitus: An exploratory analysis with machine learning algorithms.

Diabetes & metabolic syndrome
INTRODUCTION: In 2021, the International Diabetes Federation reported that 537 million people worldwide are living with diabetes. While glucagon-like peptide-1 agonists provide significant benefits in diabetes management, approximately 40% of patient...

A transparent machine learning algorithm uncovers HbA1c patterns associated with therapeutic inertia in patients with type 2 diabetes and failure of metformin monotherapy.

International journal of medical informatics
AIMS: This study aimed to identify and categorize the determinants influencing the intensification of therapy in Type 2 Diabetes (T2D) patients with suboptimal blood glucose control despite metformin monotherapy.

Computational approaches for lead compound discovery in dipeptidyl peptidase-4 inhibition using machine learning and molecular dynamics techniques.

Computational biology and chemistry
The prediction of possible lead compounds from already-known drugs that may present DPP-4 inhibition activity imply a advantage in the drug development in terms of time and cost to find alternative medicines for the treatment of Type 2 Diabetes Melli...

Application of Proteomics and Machine Learning Methods to Study the Pathogenesis of Diabetic Nephropathy and Screen Urinary Biomarkers.

Journal of proteome research
Diabetic nephropathy (DN) has become the main cause of end-stage renal disease worldwide, causing significant health problems. Early diagnosis of the disease is quite inadequate. To screen urine biomarkers of DN and explore its potential mechanism, t...

Plasma infrared fingerprinting with machine learning enables single-measurement multi-phenotype health screening.

Cell reports. Medicine
Infrared spectroscopy is a powerful technique for probing the molecular profiles of complex biofluids, offering a promising avenue for high-throughput in vitro diagnostics. While several studies showcased its potential in detecting health conditions,...

Prediction model for cardiovascular disease in patients with diabetes using machine learning derived and validated in two independent Korean cohorts.

Scientific reports
This study aimed to develop and validate a machine learning (ML) model tailored to the Korean population with type 2 diabetes mellitus (T2DM) to provide a superior method for predicting the development of cardiovascular disease (CVD), a major chronic...

A Novel AI Approach for Assessing Stress Levels in Patients with Type 2 Diabetes Mellitus Based on the Acquisition of Physiological Parameters Acquired during Daily Life.

Sensors (Basel, Switzerland)
Stress is the inherent sensation of being unable to handle demands and occurrences. If not properly managed, stress can develop into a chronic condition, leading to the onset of additional chronic health issues, such as cardiovascular illnesses and d...

Prediction of the 10-year incidence of type 2 diabetes mellitus based on advanced anthropometric indices using machine learning methods in the Iranian population.

Diabetes research and clinical practice
BACKGROUND: Type 2 diabetes mellitus (T2DM) is a growing chronic disease that can lead to disability and early death. This study aimed to establish a predictive model for the 10-year incidence of T2DM based on novel anthropometric indices.

Predicting type 2 diabetes via machine learning integration of multiple omics from human pancreatic islets.

Scientific reports
Type 2 diabetes (T2D) is the fastest growing non-infectious disease worldwide. Impaired insulin secretion from pancreatic beta-cells is a hallmark of T2D, but the mechanisms behind this defect are insufficiently characterized. Integrating multiple la...