AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Disease Progression

Showing 91 to 100 of 702 articles

Clear Filters

Development and Validation of Machine Learning Models for Predicting Tumor Progression in OSCC.

Oral diseases
OBJECTIVES: Development of a prediction model using machine learning (ML) method for tumor progression in oral squamous cell carcinoma (OSCC) patients would provide risk estimation for individual patient outcomes.

Comparison of Manual vs Artificial Intelligence-Based Muscle MRI Segmentation for Evaluating Disease Progression in Patients With CMT1A.

Neurology
BACKGROUND AND OBJECTIVES: Intramuscular fat fraction (FF), assessed with quantitative MRI (qMRI), has emerged as one of the few responsive outcome measures in CMT1A patients. The main limitation for its use in future therapeutic trials is the time r...

Unmasking Neuroendocrine Prostate Cancer with a Machine Learning-Driven Seven-Gene Stemness Signature That Predicts Progression.

International journal of molecular sciences
Prostate cancer (PCa) poses a significant global health challenge, particularly due to its progression into aggressive forms like neuroendocrine prostate cancer (NEPC). This study developed and validated a stemness-associated gene signature using adv...

Development of a machine learning model for precision prognosis of rapid kidney function decline in people with diabetes and chronic kidney disease.

Diabetes research and clinical practice
AIMS: To develop a machine learning model for predicting rapid kidney function decline in people with type 2 diabetes (T2D) and chronic kidney disease (CKD) and to pinpoint key modifiable risk factors for targeted interventions.

Higher effect sizes for the detection of accelerated brain volume loss and disability progression in multiple sclerosis using deep-learning.

Computers in biology and medicine
PURPOSE: Clinical validation of "BrainLossNet", a deep learning-based method for fast and robust estimation of brain volume loss (BVL) from longitudinal T1-weighted MRI, for the detection of accelerated BVL in multiple sclerosis (MS) and for the disc...

Identification of key biomarkers for predicting atherosclerosis progression in polycystic ovary syndrome via bioinformatics analysis and machine learning.

Computers in biology and medicine
OBJECTIVE: Polycystic ovary syndrome (PCOS) is one of the most significant cardiovascular risk factors, playing vital roles in various cardiovascular diseases such as atherosclerosis (AS). This study attempted to explore key biomarkers for predicting...

Development of the machine learning model that is highly validated and easily applicable to predict radiographic knee osteoarthritis progression.

Journal of orthopaedic research : official publication of the Orthopaedic Research Society
Many models using the aid of artificial intelligence have been recently proposed to predict the progression of knee osteoarthritis. However, previous models have not been properly validated with an external data set or have reported poor predictive p...

Nuclear magnetic resonance-based metabolomics with machine learning for predicting progression from prediabetes to diabetes.

eLife
BACKGROUND: Identification of individuals with prediabetes who are at high risk of developing diabetes allows for precise interventions. We aimed to determine the role of nuclear magnetic resonance (NMR)-based metabolomic signature in predicting the ...