AIMC Topic: Disease Progression

Clear Filters Showing 91 to 100 of 783 articles

LMSST-GCN: Longitudinal MRI sub-structural texture guided graph convolution network for improved progression prediction of knee osteoarthritis.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVES: Accurate prediction of progression in knee osteoarthritis (KOA) is significant for early personalized intervention. Previous methods commonly focused on quantifying features from a specific sub-structure imaged at baseline ...

Predictive value of machine learning for the progression of gestational diabetes mellitus to type 2 diabetes: a systematic review and meta-analysis.

BMC medical informatics and decision making
BACKGROUND: This systematic review aims to explore the early predictive value of machine learning (ML) models for the progression of gestational diabetes mellitus (GDM) to type 2 diabetes mellitus (T2DM).

Machine learning-based prediction model integrating ultrasound scores and clinical features for the progression to rheumatoid arthritis in patients with undifferentiated arthritis.

Clinical rheumatology
OBJECTIVES: Predicting rheumatoid arthritis (RA) progression in undifferentiated arthritis (UA) patients remains a challenge. Traditional approaches combining clinical assessments and ultrasonography (US) often lack accuracy due to the complex intera...

Machine learning-derived asthma and allergy trajectories in children: a systematic review and meta-analysis.

European respiratory review : an official journal of the European Respiratory Society
INTRODUCTION: Numerous studies have characterised trajectories of asthma and allergy in children using machine learning, but with different techniques and mixed findings. The present work aimed to summarise the evidence and critically appraise the me...

Attention-Guided 3D CNN With Lesion Feature Selection for Early Alzheimer's Disease Prediction Using Longitudinal sMRI.

IEEE journal of biomedical and health informatics
Predicting the progression from mild cognitive impairment (MCI) to Alzheimer's disease (AD) is critical for early intervention. Towards this end, various deep learning models have been applied in this domain, typically relying on structural magnetic ...

Predicting rapid progression in knee osteoarthritis: a novel and interpretable automated machine learning approach, with specific focus on young patients and early disease.

Annals of the rheumatic diseases
OBJECTIVES: To facilitate the stratification of patients with osteoarthritis (OA) for new treatment development and clinical trial recruitment, we created an automated machine learning (autoML) tool predicting the rapid progression of knee OA over a ...

A deep learning-based ADRPPA algorithm for the prediction of diabetic retinopathy progression.

Scientific reports
As an alternative to assessments performed by human experts, artificial intelligence (AI) is currently being used for screening fundus images and monitoring diabetic retinopathy (DR). Although AI models can provide quasi-clinician diagnoses, they rar...

Machine Learning Driven by Magnetic Resonance Imaging for the Classification of Alzheimer Disease Progression: Systematic Review and Meta-Analysis.

JMIR aging
BACKGROUND: To diagnose Alzheimer disease (AD), individuals are classified according to the severity of their cognitive impairment. There are currently no specific causes or conditions for this disease.

CT-based clinical-radiomics model to predict progression and drive clinical applicability in locally advanced head and neck cancer.

European radiology
BACKGROUND: Definitive chemoradiation is the primary treatment for locally advanced head and neck carcinoma (LAHNSCC). Optimising outcome predictions requires validated biomarkers, since TNM8 and HPV could have limitations. Radiomics may enhance risk...