AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Disease Progression

Showing 51 to 60 of 702 articles

Clear Filters

A multi-modal fusion model with enhanced feature representation for chronic kidney disease progression prediction.

Briefings in bioinformatics
Artificial intelligence (AI)-based multi-modal fusion algorithms are pivotal in emulating clinical practice by integrating data from diverse sources. However, most of the existing multi-modal models focus on designing new modal fusion methods, ignori...

Predicting conversion in cognitively normal and mild cognitive impairment individuals with machine learning: Is the CSF status still relevant?

Alzheimer's & dementia : the journal of the Alzheimer's Association
INTRODUCTION: Machine learning (ML) helps diagnose the mild cognitive impairment-Alzheimer's disease (MCI-AD) spectrum. However, ML is fed with data unavailable in standard clinical practice. Thus, we tested a novel multi-step ML approach to predict ...

Predicting rapid progression in knee osteoarthritis: a novel and interpretable automated machine learning approach, with specific focus on young patients and early disease.

Annals of the rheumatic diseases
OBJECTIVES: To facilitate the stratification of patients with osteoarthritis (OA) for new treatment development and clinical trial recruitment, we created an automated machine learning (autoML) tool predicting the rapid progression of knee OA over a ...

An unsupervised learning approach for clustering joint trajectories of Alzheimer's disease biomarkers: An application to ADNI Data.

Alzheimer's & dementia : the journal of the Alzheimer's Association
INTRODUCTION: Current models of Alzheimer's disease (AD) progression assume a common pattern and pathology, oversimplifying the heterogeneity of clinical AD.

Delta-Radiomics Using Machine Learning Classifiers With Auxiliary Data Sets to Predict Disease Progression During Magnetic Resonance-Guided Radiotherapy in Adrenal Metastases.

JCO clinical cancer informatics
PURPOSE: Adaptive radiotherapy accounts for interfractional anatomic changes. We hypothesize that changes in the gross tumor volumes identified during daily scans could be analyzed using delta-radiomics to predict disease progression events. We evalu...

LMSST-GCN: Longitudinal MRI sub-structural texture guided graph convolution network for improved progression prediction of knee osteoarthritis.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVES: Accurate prediction of progression in knee osteoarthritis (KOA) is significant for early personalized intervention. Previous methods commonly focused on quantifying features from a specific sub-structure imaged at baseline ...

A machine learning framework for short-term prediction of chronic obstructive pulmonary disease exacerbations using personal air quality monitors and lifestyle data.

Scientific reports
Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous disease with a variety of symptoms including, persistent coughing and mucus production, shortness of breath, wheezing, and chest tightness. As the disease advances, exacerbations, i.e. a...

Machine learning-based prediction of illness course in major depression: The relevance of risk factors.

Journal of affective disorders
BACKGROUND: Major depressive disorder (MDD) comes along with an increased risk of recurrence and poor course of illness. Machine learning has recently shown promise in the prediction of mental illness, yet models aiming to predict MDD course are stil...

Deep Learning Approaches to Predict Geographic Atrophy Progression Using Three-Dimensional OCT Imaging.

Translational vision science & technology
PURPOSE: To evaluate the performance of various approaches of processing three-dimensional (3D) optical coherence tomography (OCT) images for deep learning models in predicting area and future growth rate of geographic atrophy (GA) lesions caused by ...