AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Disease

Showing 21 to 30 of 142 articles

Clear Filters

Systematic analysis of binding of transcription factors to noncoding variants.

Nature
Many sequence variants have been linked to complex human traits and diseases, but deciphering their biological functions remains challenging, as most of them reside in noncoding DNA. Here we have systematically assessed the binding of 270 human trans...

Development of machine learning model for diagnostic disease prediction based on laboratory tests.

Scientific reports
The use of deep learning and machine learning (ML) in medical science is increasing, particularly in the visual, audio, and language data fields. We aimed to build a new optimized ensemble model by blending a DNN (deep neural network) model with two ...

Permutation-based identification of important biomarkers for complex diseases via machine learning models.

Nature communications
Study of human disease remains challenging due to convoluted disease etiologies and complex molecular mechanisms at genetic, genomic, and proteomic levels. Many machine learning-based methods have been developed and widely used to alleviate some anal...

Identifying digenic disease genes via machine learning in the Undiagnosed Diseases Network.

American journal of human genetics
Rare diseases affect millions of people worldwide, and discovering their genetic causes is challenging. More than half of the individuals analyzed by the Undiagnosed Diseases Network (UDN) remain undiagnosed. The central hypothesis of this work is th...

Machine Learning Approaches on High Throughput NGS Data to Unveil Mechanisms of Function in Biology and Disease.

Cancer genomics & proteomics
In this review, the fundamental basis of machine learning (ML) and data mining (DM) are summarized together with the techniques for distilling knowledge from state-of-the-art omics experiments. This includes an introduction to the basic mathematical ...

Role of Deep Learning in Predicting Aging-Related Diseases: A Scoping Review.

Cells
Aging refers to progressive physiological changes in a cell, an organ, or the whole body of an individual, over time. Aging-related diseases are highly prevalent and could impact an individual's physical health. Recently, artificial intelligence (AI)...

Disease variant prediction with deep generative models of evolutionary data.

Nature
Quantifying the pathogenicity of protein variants in human disease-related genes would have a marked effect on clinical decisions, yet the overwhelming majority (over 98%) of these variants still have unknown consequences. In principle, computational...

Decoding the effects of synonymous variants.

Nucleic acids research
Synonymous single nucleotide variants (sSNVs) are common in the human genome but are often overlooked. However, sSNVs can have significant biological impact and may lead to disease. Existing computational methods for evaluating the effect of sSNVs su...

Predicting miRNA-disease associations using an ensemble learning framework with resampling method.

Briefings in bioinformatics
MOTIVATION: Accumulating evidences have indicated that microRNA (miRNA) plays a crucial role in the pathogenesis and progression of various complex diseases. Inferring disease-associated miRNAs is significant to explore the etiology, diagnosis and tr...

HINGRL: predicting drug-disease associations with graph representation learning on heterogeneous information networks.

Briefings in bioinformatics
Identifying new indications for drugs plays an essential role at many phases of drug research and development. Computational methods are regarded as an effective way to associate drugs with new indications. However, most of them complete their tasks ...