AIMC Topic: Drug Evaluation, Preclinical

Clear Filters Showing 51 to 60 of 197 articles

Deep learning-based classification model for GPR151 activator activity prediction.

BMC bioinformatics
BACKGROUND: GPR151 is a kind of protein belonging to G protein-coupled receptor family that is closely associated with a variety of physiological and pathological processes.The potential use of GPR151 as a therapeutic target for the management of met...

Artificial intelligence assisted identification of potential tau aggregation inhibitors: ligand- and structure-based virtual screening, in silico ADME, and molecular dynamics study.

Molecular diversity
Alzheimer's disease (AD) is a severe, growing, multifactorial disorder affecting millions of people worldwide characterized by cognitive decline and neurodegeneration. The accumulation of tau protein into paired helical filaments is one of the major ...

The Synergy between Deep Learning and Organs-on-Chips for High-Throughput Drug Screening: A Review.

Biosensors
Organs-on-chips (OoCs) are miniature microfluidic systems that have arguably become a class of advanced in vitro models. Deep learning, as an emerging topic in machine learning, has the ability to extract a hidden statistical relationship from the in...

Development of non-bias phenotypic drug screening for cardiomyocyte hypertrophy by image segmentation using deep learning.

Biochemical and biophysical research communications
The number of patients with heart failure and related deaths is rapidly increasing worldwide, making it a major problem. Cardiac hypertrophy is a crucial preliminary step in heart failure, but its treatment has not yet been fully successful. In this ...

Deep-learning analysis of micropattern-based organoids enables high-throughput drug screening of Huntington's disease models.

Cell reports methods
Organoids are carrying the promise of modeling complex disease phenotypes and serving as a powerful basis for unbiased drug screens, potentially offering a more efficient drug-discovery route. However, unsolved technical bottlenecks of reproducibilit...

Artificial Intelligence Technologies for COVID-19 De Novo Drug Design.

International journal of molecular sciences
The recent covid crisis has provided important lessons for academia and industry regarding digital reorganization. Among the fascinating lessons from these times is the huge potential of data analytics and artificial intelligence. The crisis exponent...

Design of SARS-CoV-2 Mpro, PLpro dual-target inhibitors based on deep reinforcement learning and virtual screening.

Future medicinal chemistry
Since December 2019, SARS-CoV-2 has continued to spread rapidly around the world. The effective drugs may provide a long-term strategy to combat this virus. The main protease (Mpro) and papain-like protease (PLpro) are two important targets for the ...

Machine-Learning-Enabled Virtual Screening for Inhibitors of Lysine-Specific Histone Demethylase 1.

Molecules (Basel, Switzerland)
A machine learning approach has been applied to virtual screening for lysine specific demethylase 1 (LSD1) inhibitors. LSD1 is an important anti-cancer target. Machine learning models to predict activity were constructed using Morgan molecular finger...

IFPTML Mapping of Drug Graphs with Protein and Chromosome Structural Networks vs. Pre-Clinical Assay Information for Discovery of Antimalarial Compounds.

International journal of molecular sciences
The parasite species of genus causes Malaria, which remains a major global health problem due to parasite resistance to available Antimalarial drugs and increasing treatment costs. Consequently, computational prediction of new Antimalarial compounds...