AIMC Topic: Echocardiography

Clear Filters Showing 31 to 40 of 398 articles

Regional Image Quality Scoring for 2-D Echocardiography Using Deep Learning.

Ultrasound in medicine & biology
OBJECTIVE: To develop and compare methods to automatically estimate regional ultrasound image quality for echocardiography separate from view correctness.

Multiple token rearrangement Transformer network with explicit superpixel constraint for segmentation of echocardiography.

Medical image analysis
Diagnostic cardiologists have considerable clinical demand for precise segmentation of echocardiography to diagnose cardiovascular disease. The paradox is that manual segmentation of echocardiography is a time-consuming and operator-dependent task. C...

Artificial intelligence-enhanced comprehensive assessment of the aortic valve stenosis continuum in echocardiography.

EBioMedicine
BACKGROUND: Transthoracic echocardiography (TTE) is the primary modality for diagnosing aortic stenosis (AS), yet it requires skilled operators and can be resource-intensive. We developed and validated an artificial intelligence (AI)-based system for...

Deep Learning-Enabled Assessment of Right Ventricular Function Improves Prognostication After Transcatheter Edge-to-Edge Repair for Mitral Regurgitation.

Circulation. Cardiovascular imaging
BACKGROUND: Right ventricular (RV) function has a well-established prognostic role in patients with severe mitral regurgitation (MR) undergoing transcatheter edge-to-edge repair (TEER) and is typically assessed using echocardiography-measured tricusp...

Development and validation of an interpretable machine learning model for predicting left atrial thrombus or spontaneous echo contrast in non-valvular atrial fibrillation patients.

PloS one
PURPOSE: Left atrial thrombus or spontaneous echo contrast (LAT/SEC) are widely recognized as significant contributors to cardiogenic embolism in non-valvular atrial fibrillation (NVAF). This study aimed to construct and validate an interpretable pre...

A comprehensive scoping review on machine learning-based fetal echocardiography analysis.

Computers in biology and medicine
Fetal echocardiography (ultrasound of the fetal heart) plays a vital role in identifying heart defects, allowing clinicians to establish prenatal and postnatal management plans. Machine learning-based methods are emerging to support the automation of...

Artificial intelligence for left ventricular hypertrophy detection and differentiation on echocardiography, cardiac magnetic resonance and cardiac computed tomography: A systematic review.

International journal of cardiology
AIMS: Left ventricular hypertrophy (LVH) is a common clinical finding associated with adverse cardiovascular outcomes. Once LVH is diagnosed, defining its cause has crucial clinical implications. Artificial intelligence (AI) may allow significant pro...

Clustering-based binary Grey Wolf Optimisation model with 6LDCNNet for prediction of heart disease using patient data.

Scientific reports
In recent years, the healthcare data system has expanded rapidly, allowing for the identification of important health trends and facilitating targeted preventative care. Heart disease remains a leading cause of death in developed countries, often lea...

Machine learning based radiomics model to predict radiotherapy induced cardiotoxicity in breast cancer.

Journal of applied clinical medical physics
PURPOSE: Cardiotoxicity is one of the major concerns in breast cancer treatment, significantly affecting patient outcomes. To improve the likelihood of favorable outcomes for breast cancer survivors, it is essential to carefully balance the potential...

Detection of cardiac amyloidosis using machine learning on routine echocardiographic measurements.

Open heart
BACKGROUND: Cardiac amyloidosis (CA) is an underdiagnosed, progressive and lethal disease. Machine learning applied to common measurements derived from routine echocardiogram studies can inform suspicion of CA.