AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Electronic Health Records

Showing 211 to 220 of 2331 articles

Clear Filters

Artificial intelligence-based drug repurposing with electronic health record clinical corroboration: A case for ketamine as a potential treatment for amphetamine-type stimulant use disorder.

Addiction (Abingdon, England)
BACKGROUND AND AIMS: Amphetamine-type stimulants are the second-most used illicit drugs globally, yet there are no US Food and Drug Administration (FDA)-approved treatments for amphetamine-type stimulant use disorders (ATSUD). The aim of this study w...

Smart data-driven medical decisions through collective and individual anomaly detection in healthcare time series.

International journal of medical informatics
BACKGROUND: Anomalies in healthcare refer to deviation from the norm of unusual or unexpected patterns or activities related to patients, diseases or medical centres. Detecting these anomalies is crucial for timely interventions and efficient decisio...

Natural Language Processing to Adjudicate Heart Failure Hospitalizations in Global Clinical Trials.

Circulation. Heart failure
BACKGROUND: Medical record review by a physician clinical events committee is the gold standard for identifying cardiovascular outcomes in clinical trials, but is labor-intensive and poorly reproducible. Automated outcome adjudication by artificial i...

Predicting neurodevelopmental disorders using machine learning models and electronic health records - status of the field.

Journal of neurodevelopmental disorders
Machine learning (ML) is increasingly used to identify patterns that could predict neurodevelopmental disorders (NDDs), such as autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). One key source of multilevel data for ...

Extracting social determinants of health from inpatient electronic medical records using natural language processing.

Journal of epidemiology and population health
BACKGROUND: Social determinants of health (SDOH) have been shown to be important predictors of health outcomes. Here we developed methods to extract them from inpatient electronic medical record (EMR) data using techniques compatible with current EMR...

Transformer-based deep learning model for the diagnosis of suspected lung cancer in primary care based on electronic health record data.

EBioMedicine
BACKGROUND: Due to its late stage of diagnosis lung cancer is the commonest cause of death from cancer in the UK. Existing epidemiological risk models in clinical usage, which have Positive Predictive Values (PPV) of less than 10%, do not consider th...

MultiADE: A Multi-domain benchmark for Adverse Drug Event extraction.

Journal of biomedical informatics
OBJECTIVE: Active adverse event surveillance monitors Adverse Drug Events (ADE) from different data sources, such as electronic health records, medical literature, social media and search engine logs. Over the years, many datasets have been created, ...

Shareable artificial intelligence to extract cancer outcomes from electronic health records for precision oncology research.

Nature communications
Databases that link molecular data to clinical outcomes can inform precision cancer research into novel prognostic and predictive biomarkers. However, outside of clinical trials, cancer outcomes are typically recorded only in text form within electro...

Machine Learning for Mental Health: Applications, Challenges, and the Clinician's Role.

Current psychiatry reports
PURPOSE OF REVIEW: This review aims to evaluate the current psychiatric applications and limitations of machine learning (ML), defined as techniques used to train algorithms to improve performance at a task based on data. The review emphasizes the cl...

Automated real-world data integration improves cancer outcome prediction.

Nature
The digitization of health records and growing availability of tumour DNA sequencing provide an opportunity to study the determinants of cancer outcomes with unprecedented richness. Patient data are often stored in unstructured text and siloed datase...