AIMC Topic: Esophageal Neoplasms

Clear Filters Showing 11 to 20 of 263 articles

Artificial intelligence for intraoperative video analysis in robotic-assisted esophagectomy.

Surgical endoscopy
BACKGROUND: Robotic-assisted minimally invasive esophagectomy (RAMIE) is a complex surgical procedure for treating esophageal cancer. Artificial intelligence (AI) is an uprising technology with increasing applications in the surgical field. This scop...

Voxel-level radiomics and deep learning for predicting pathologic complete response in esophageal squamous cell carcinoma after neoadjuvant immunotherapy and chemotherapy.

Journal for immunotherapy of cancer
BACKGROUND: Accurate prediction of pathologic complete response (pCR) following neoadjuvant immunotherapy combined with chemotherapy (nICT) is crucial for tailoring patient care in esophageal squamous cell carcinoma (ESCC). This study aimed to develo...

Artificial intelligence-based automated surgical workflow recognition in esophageal endoscopic submucosal dissection: an international multicenter study (with video).

Surgical endoscopy
BACKGROUND: Endoscopic submucosal dissection (ESD) is a crucial yet challenging multi-phase procedure for treating early gastrointestinal cancers. This study developed an artificial intelligence (AI)-based automated surgical workflow recognition mode...

Multimodal deep learning for predicting PD-L1 biomarker and clinical immunotherapy outcomes of esophageal cancer.

Frontiers in immunology
Although the immune checkpoint inhibitors (ICIs) have demonstrated remarkable anti-tumor efficacy in solid tumors, the proportion of ESCC patients who benefit from ICIs remains limited. Current biomarkers have assisted in identifying potential respon...

CT-Based Deep Learning Predicts Prognosis in Esophageal Squamous Cell Cancer Patients Receiving Immunotherapy Combined with Chemotherapy.

Academic radiology
RATIONALE AND OBJECTIVES: Immunotherapy combined with chemotherapy has improved outcomes for some esophageal squamous cell carcinoma (ESCC) patients, but accurate pre-treatment risk stratification remains a critical gap. This study constructed a deep...

Integrating single-cell sequencing and machine learning to uncover the role of mitophagy in subtyping and prognosis of esophageal cancer.

Apoptosis : an international journal on programmed cell death
Globally, esophageal cancer stands as a prominent contributor to cancer-related fatalities, distinguished by its poor prognosis. Mitophagy has a significant impact on the process of cancer progression. This study investigated the prognostic significa...

Optimizing AI models to predict esophageal squamous cell carcinoma risk by incorporating small datasets of soft palate images.

Scientific reports
There is a currently an unmet need for non-invasive methods to predict the risk of esophageal squamous cell carcinoma (ESCC). Previously, we found that specific soft palate morphologies are strongly associated with increased ESCC risk. However, there...

Machine learning-based lactate-related genes signature predicts clinical outcomes and unveils novel therapeutic targets in esophageal squamous cell carcinoma.

Cancer letters
Esophageal squamous cell carcinoma (ESCC), a predominant subtype of esophageal cancer, typically presents with poor prognosis. Lactate is a crucial metabolite in cancer and significantly impacts tumor biology. Here, we aimed to construct a lactate-re...

Development and validation of a novel artificial intelligence algorithm for precise prediction the postoperative prognosis of esophageal squamous cell carcinoma.

BMC cancer
BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a highly aggressive malignancy, and current postoperative prognostic assessment methods remain unsatisfactory, underlining the urgent to develop a reliable approach for precision medicine. Give...

Role of Artificial Intelligence in the Detection and Management of Premalignant and Malignant Lesions of the Esophagus and Stomach.

Gastrointestinal endoscopy clinics of North America
The advent of artificial intelligence (AI) and deep learning algorithms, particularly convolutional neural networks, promises to address pitfalls, bridging the care for patients at high risk with improved detection (computer-aided detection [CADe]) a...