AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Follow-Up Studies

Showing 101 to 110 of 723 articles

Clear Filters

Machine learning for predicting colon cancer recurrence.

Surgical oncology
INTRODUCTION: Colorectal cancer (CRC) is a global public health concern, ranking among the most commonly diagnosed malignancies worldwide. Despite advancements in treatment modalities, the specter of CRC recurrence remains a significant challenge, de...

Completion of Pembrolizumab in Advanced Non-Small Cell Lung Cancer-Real World Outcomes After Two Years of Therapy (COPILOT).

Clinical lung cancer
BACKGROUND: Seminal trials with first-line pembrolizumab for metastatic non-small cell lung cancer (NSCLC) mandated a maximum two-years treatment. We describe real-world outcomes of a multi-site Australian cohort of patients who completed two-years o...

Weight gained during treatment predicts 6-month body mass index in a large sample of patients with anorexia nervosa using ensemble machine learning.

The International journal of eating disorders
OBJECTIVE: This study used machine learning methods to analyze data on treatment outcomes from individuals with anorexia nervosa admitted to a specialized eating disorders treatment program.

Predicting adverse long-term neurocognitive outcomes after pediatric intensive care unit admission.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Critically ill children may suffer from impaired neurocognitive functions years after ICU (intensive care unit) discharge. To assess neurocognitive functions, these children are subjected to a fixed sequence of tests. Underg...

Predicting the conversion from clinically isolated syndrome to multiple sclerosis: An explainable machine learning approach.

Multiple sclerosis and related disorders
INTRODUCTION: Predicting the conversion of clinically isolated syndrome (CIS) to clinically definite multiple sclerosis (CDMS) is critical to personalizing treatment planning and benefits for patients. The aim of this study is to develop an explainab...

Artificial intelligence facial recognition system for diagnosis of endocrine and metabolic syndromes based on a facial image database.

Diabetes & metabolic syndrome
AIM: To build a facial image database and to explore the diagnostic efficacy and influencing factors of the artificial intelligence-based facial recognition (AI-FR) system for multiple endocrine and metabolic syndromes.

Dual-Region Computed Tomography Radiomics-Based Machine Learning Predicts Subcarinal Lymph Node Metastasis in Patients with Non-small Cell Lung Cancer.

Annals of surgical oncology
BACKGROUND: Noninvasively and accurately predicting subcarinal lymph node metastasis (SLNM) for patients with non-small cell lung cancer (NSCLC) remains challenging. This study was designed to develop and validate a tumor and subcarinal lymph nodes (...

Artificial intelligence predicts undiagnosed atrial fibrillation in patients with embolic stroke of undetermined source using sinus rhythm electrocardiograms.

Heart rhythm
BACKGROUND: Artificial intelligence (AI)-enabled sinus rhythm (SR) electrocardiogram (ECG) interpretation can aid in identifying undiagnosed paroxysmal atrial fibrillation (AF) in patients with embolic stroke of undetermined source (ESUS).

Machine learning-assisted prediction of trabeculectomy outcomes among patients of juvenile glaucoma by using 5-year follow-up data.

Indian journal of ophthalmology
OBJECTIVE: To develop machine learning (ML) models, using pre and intraoperative surgical parameters, for predicting trabeculectomy outcomes in the eyes of patients with juvenile-onset primary open-angle glaucoma (JOAG) undergoing primary surgery.