AIMC Topic: Gene Expression Profiling

Clear Filters Showing 351 to 360 of 1306 articles

Identification of ferroptosis-related genes associated with diffuse large B-cell lymphoma via bioinformatics and machine learning approaches.

International journal of biological macromolecules
Ferroptosis has emerged as a critical mechanism in the development and progression of various tumors, particularly diffuse large B-cell lymphoma (DLBCL). However, the thorough characterization of ferroptosis-related genes in DLBCL remains inadequatel...

Essential blood molecular signature for progression of sepsis-induced acute lung injury: Integrated bioinformatic, single-cell RNA Seq and machine learning analysis.

International journal of biological macromolecules
In this study, we aimed to identify an essential blood molecular signature for chacterizing the progression of sepsis-induced acute lung injury using integrated bioinformatic and machine learning analysis. The results showed that a total of 88 functi...

Identification of metabolism related biomarkers in obesity based on adipose bioinformatics and machine learning.

Journal of translational medicine
BACKGROUND: Obesity has emerged as a growing global public health concern over recent decades. Obesity prevalence exhibits substantial global variation, ranging from less than 5% in regions like China, Japan, and Africa to rates exceeding 75% in urba...

Development and validation of preeclampsia predictive models using key genes from bioinformatics and machine learning approaches.

Frontiers in immunology
BACKGROUND: Preeclampsia (PE) poses significant diagnostic and therapeutic challenges. This study aims to identify novel genes for potential diagnostic and therapeutic targets, illuminating the immune mechanisms involved.

Analysis and validation of diagnostic biomarkers and immune cell infiltration characteristics in Crohn's disease by integrating bioinformatics and machine learning.

Autoimmunity
Crohn's disease (CD) presents significant diagnostic and therapeutic challenges due to its unclear etiology, frequent relapses, and limited treatment options. Traditional monitoring often relies on invasive and costly gastrointestinal procedures. Thi...

Construction of the miRNA/Pyroptosis-Related Molecular Regulatory Axis in Abdominal Aortic Aneurysm: Evidence From Transcriptome Data Combined With Multiple Machine Learning Approaches Followed by Experiment Validation.

Journal of immunology research
Abdominal aortic aneurysm (AAA) represents a permanent and localized widening of the abdominal aorta, posing a potentially lethal risk of aortic rupture. Several recent studies have highlighted the role of pyroptosis, a pro-inflammatory programed ce...

Integration of transcriptomics and machine learning for insights into breast cancer: exploring lipid metabolism and immune interactions.

Frontiers in immunology
BACKGROUND: Breast cancer (BRCA) represents a substantial global health challenge marked by inadequate early detection rates. The complex interplay between the tumor immune microenvironment and fatty acid metabolism in BRCA requires further investiga...

Deciphering the role of lipid metabolism-related genes in Alzheimer's disease: a machine learning approach integrating Traditional Chinese Medicine.

Frontiers in endocrinology
BACKGROUND: Alzheimer's disease (AD) represents a progressive neurodegenerative disorder characterized by the accumulation of misfolded amyloid beta protein, leading to the formation of amyloid plaques and the aggregation of tau protein into neurofib...

Unmasking Neuroendocrine Prostate Cancer with a Machine Learning-Driven Seven-Gene Stemness Signature That Predicts Progression.

International journal of molecular sciences
Prostate cancer (PCa) poses a significant global health challenge, particularly due to its progression into aggressive forms like neuroendocrine prostate cancer (NEPC). This study developed and validated a stemness-associated gene signature using adv...

Identification and validation of efferocytosis-related biomarkers for the diagnosis of metabolic dysfunction-associated steatohepatitis based on bioinformatics analysis and machine learning.

Frontiers in immunology
BACKGROUND: Metabolic dysfunction-associated steatohepatitis (MASH) is a highly prevalent liver disease globally, with a significant risk of progressing to cirrhosis and even liver cancer. Efferocytosis, a process implicated in a broad spectrum of ch...