AIMC Topic: Gene Expression Profiling

Clear Filters Showing 821 to 830 of 1328 articles

Differential gene expression and gene ontologies associated with increasing water-stress in leaf and root transcriptomes of perennial ryegrass (Lolium perenne).

PloS one
Perennial ryegrass (Lolium perenne) is a forage and amenity grass species widely cultivated in temperate regions worldwide. As such, perennial ryegrass populations are exposed to a range of environmental conditions and stresses on a seasonal basis an...

scGen predicts single-cell perturbation responses.

Nature methods
Accurately modeling cellular response to perturbations is a central goal of computational biology. While such modeling has been based on statistical, mechanistic and machine learning models in specific settings, no generalization of predictions to ph...

Identification of the gene signature reflecting schizophrenia's etiology by constructing artificial intelligence-based method of enhanced reproducibility.

CNS neuroscience & therapeutics
AIMS: As one of the most fundamental questions in modern science, "what causes schizophrenia (SZ)" remains a profound mystery due to the absence of objective gene markers. The reproducibility of the gene signatures identified by independent studies i...

Wx: a neural network-based feature selection algorithm for transcriptomic data.

Scientific reports
Next-generation sequencing (NGS), which allows the simultaneous sequencing of billions of DNA fragments simultaneously, has revolutionized how we study genomics and molecular biology by generating genome-wide molecular maps of molecules of interest. ...

Screening and Bioinformatics Analysis of IgA Nephropathy Gene Based on GEO Databases.

BioMed research international
PURPOSE: To identify novel biomarkers of IgA nephropathy (IgAN) through bioinformatics analysis and elucidate the possible molecular mechanism.

Exploration of potential key pathways and genes in multiple ocular cancers through bioinformatics analysis.

Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
PURPOSE: Primary cancers of the eye are common in ocular diseases. The objective of this study was to explore the underlying mechanisms and the potential target genes in multiple ocular cancers by bioinformatics approach.

Deconvolution of autoencoders to learn biological regulatory modules from single cell mRNA sequencing data.

BMC bioinformatics
BACKGROUND: Unsupervised machine learning methods (deep learning) have shown their usefulness with noisy single cell mRNA-sequencing data (scRNA-seq), where the models generalize well, despite the zero-inflation of the data. A class of neural network...

Machine learning approaches to predict lupus disease activity from gene expression data.

Scientific reports
The integration of gene expression data to predict systemic lupus erythematosus (SLE) disease activity is a significant challenge because of the high degree of heterogeneity among patients and study cohorts, especially those collected on different mi...

Discriminant analysis and machine learning approach for evaluating and improving the performance of immunohistochemical algorithms for COO classification of DLBCL.

Journal of translational medicine
BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is classified into germinal center-like (GCB) and non-germinal center-like (non-GCB) cell-of-origin groups, entities driven by different oncogenic pathways with different clinical outcomes. DLBCL clas...

Identification of leukemia stem cell expression signatures through Monte Carlo feature selection strategy and support vector machine.

Cancer gene therapy
Acute myeloid leukemia (AML) is a type of blood cancer characterized by the rapid growth of immature white blood cells from the bone marrow. Therapy resistance resulting from the persistence of leukemia stem cells (LSCs) are found in numerous patient...