AIMC Topic: Genetic Variation

Clear Filters Showing 71 to 80 of 130 articles

Learning from Longitudinal Data in Electronic Health Record and Genetic Data to Improve Cardiovascular Event Prediction.

Scientific reports
Current approaches to predicting a cardiovascular disease (CVD) event rely on conventional risk factors and cross-sectional data. In this study, we applied machine learning and deep learning models to 10-year CVD event prediction by using longitudina...

Embracing Environmental Genomics and Machine Learning for Routine Biomonitoring.

Trends in microbiology
Genomics is fast becoming a routine tool in medical diagnostics and cutting-edge biotechnologies. Yet, its use for environmental biomonitoring is still considered a futuristic ideal. Until now, environmental genomics was mainly used as a replacement ...

Machine Learning Methods as a Tool for Predicting Risk of Illness Applying Next-Generation Sequencing Data.

Risk analysis : an official publication of the Society for Risk Analysis
Next-generation sequencing (NGS) data present an untapped potential to improve microbial risk assessment (MRA) through increased specificity and redefinition of the hazard. Most of the MRA models do not account for differences in survivability and vi...

Towards better prediction of Mycobacterium tuberculosis lineages from MIRU-VNTR data.

Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases
The determination of lineages from strain-based molecular genotyping information is an important problem in tuberculosis. Mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing is a commonly used molecular genotyp...

Supervised machine learning reveals introgressed loci in the genomes of Drosophila simulans and D. sechellia.

PLoS genetics
Hybridization and gene flow between species appears to be common. Even though it is clear that hybridization is widespread across all surveyed taxonomic groups, the magnitude and consequences of introgression are still largely unknown. Thus it is cru...

A machine learning model to determine the accuracy of variant calls in capture-based next generation sequencing.

BMC genomics
BACKGROUND: Next generation sequencing (NGS) has become a common technology for clinical genetic tests. The quality of NGS calls varies widely and is influenced by features like reference sequence characteristics, read depth, and mapping accuracy. Wi...

Imbalance-Aware Machine Learning for Predicting Rare and Common Disease-Associated Non-Coding Variants.

Scientific reports
Disease and trait-associated variants represent a tiny minority of all known genetic variation, and therefore there is necessarily an imbalance between the small set of available disease-associated and the much larger set of non-deleterious genomic v...

Multiple Trait Covariance Association Test Identifies Gene Ontology Categories Associated with Chill Coma Recovery Time in Drosophila melanogaster.

Scientific reports
The genomic best linear unbiased prediction (GBLUP) model has proven to be useful for prediction of complex traits as well as estimation of population genetic parameters. Improved inference and prediction accuracy of GBLUP may be achieved by identify...

SNooPer: a machine learning-based method for somatic variant identification from low-pass next-generation sequencing.

BMC genomics
BACKGROUND: Next-generation sequencing (NGS) allows unbiased, in-depth interrogation of cancer genomes. Many somatic variant callers have been developed yet accurate ascertainment of somatic variants remains a considerable challenge as evidenced by t...