AIMC Topic: Glioblastoma

Clear Filters Showing 21 to 30 of 204 articles

Assessment of MGMT promoter methylation status in glioblastoma using deep learning features from multi-sequence MRI of intratumoral and peritumoral regions.

Cancer imaging : the official publication of the International Cancer Imaging Society
OBJECTIVE: This study aims to evaluate the effectiveness of deep learning features derived from multi-sequence magnetic resonance imaging (MRI) in determining the O-methylguanine-DNA methyltransferase (MGMT) promoter methylation status among glioblas...

CXCL12 impact on glioblastoma cells behaviors under dynamic culture conditions: Insights for developing new therapeutic approaches.

PloS one
Glioblastoma multiforme (GBM) is the most prevalent malignant brain tumor, with an average survival time of 14 to 20 months. Its capacity to invade brain parenchyma leads to the failure of conventional treatments and subsequent tumor recurrence. Rece...

Convolutional neural network-assisted Raman spectroscopy for high-precision diagnosis of glioblastoma.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
Glioblastoma multiforme (GBM) is the most lethal intracranial tumor with a median survival of approximately 15 months. Due to its highly invasive properties, it is particularly difficult to accurately identify the tumor margins intraoperatively. The ...

Personalized predictions of Glioblastoma infiltration: Mathematical models, Physics-Informed Neural Networks and multimodal scans.

Medical image analysis
Predicting the infiltration of Glioblastoma (GBM) from medical MRI scans is crucial for understanding tumor growth dynamics and designing personalized radiotherapy treatment plans. Mathematical models of GBM growth can complement the data in the pred...

Deep learning-based overall survival prediction in patients with glioblastoma: An automatic end-to-end workflow using pre-resection basic structural multiparametric MRIs.

Computers in biology and medicine
PURPOSE: Accurate and automated early survival prediction is critical for patients with glioblastoma (GBM) as their poor prognosis requires timely treatment decision-making. To address this need, we developed a deep learning (DL)-based end-to-end wor...

The G Protein-Coupled Receptor-Related Gene Signatures for Diagnosis and Prognosis in Glioblastoma: A Deep Learning Model Using RNA-Seq Data.

Asian Pacific journal of cancer prevention : APJCP
BACKGROUND: Glioblastoma (GBM) is the most aggressive cancer in the central nervous system in glial cells. Finding novel biomarkers in GBM offers numerous advantages that can contribute to early detection, personalized treatment, improved patient out...

Decoding Glioblastoma Heterogeneity: Neuroimaging Meets Machine Learning.

Neurosurgery
Recent advancements in neuroimaging and machine learning have significantly improved our ability to diagnose and categorize isocitrate dehydrogenase (IDH)-wildtype glioblastoma, a disease characterized by notable tumoral heterogeneity, which is cruci...

AI tool for predicting MGMT methylation in glioblastoma for clinical decision support in resource limited settings.

Scientific reports
Glioblastoma is an aggressive brain cancer with a poor prognosis. The O6-methylguanine-DNA methyltransferase (MGMT) gene methylation status is crucial for treatment stratification, yet economic constraints often limit access. This study aims to devel...

Discovery of key molecular signatures for diagnosis and therapies of glioblastoma by combining supervised and unsupervised learning approaches.

Scientific reports
Glioblastoma (GBM) is the most malignant brain cancer and one of the leading causes of cancer-related death globally. So, identifying potential molecular signatures and associated drug molecules are crucial for diagnosis and therapies of GBM. This st...

Postoperative Karnofsky performance status prediction in patients with IDH wild-type glioblastoma: A multimodal approach integrating clinical and deep imaging features.

PloS one
BACKGROUND AND PURPOSE: Glioblastoma is a highly aggressive brain tumor with limited survival that poses challenges in predicting patient outcomes. The Karnofsky Performance Status (KPS) score is a valuable tool for assessing patient functionality an...