AIMC Topic: Heart Failure

Clear Filters Showing 71 to 80 of 446 articles

Physiological control for left ventricular assist devices based on deep reinforcement learning.

Artificial organs
BACKGROUND: The improvement of controllers of left ventricular assist device (LVAD) technology supporting heart failure (HF) patients has enormous impact, given the high prevalence and mortality of HF in the population. The use of reinforcement learn...

Machine learning-based model for worsening heart failure risk in Chinese chronic heart failure patients.

ESC heart failure
AIMS: This study aims to develop and validate an optimal model for predicting worsening heart failure (WHF). Multiple machine learning (ML) algorithms were compared, and the results were interpreted using SHapley Additive exPlanations (SHAP). A clini...

Rule-based natural language processing to examine variation in worsening heart failure hospitalizations by age, sex, race and ethnicity, and left ventricular ejection fraction.

American heart journal
BACKGROUND: Prior studies characterizing worsening heart failure events (WHFE) have been limited in using structured healthcare data from hospitalizations, and with little exploration of sociodemographic variation. The current study examined the impa...

Development and validation of a machine learning-based approach to identify high-risk diabetic cardiomyopathy phenotype.

European journal of heart failure
AIMS: Abnormalities in specific echocardiographic parameters and cardiac biomarkers have been reported among individuals with diabetes. However, a comprehensive characterization of diabetic cardiomyopathy (DbCM), a subclinical stage of myocardial abn...

Enhancing Heart Failure Care: Deep Learning-Based Activity Classification in Left Ventricular Assist Device Patients.

ASAIO journal (American Society for Artificial Internal Organs : 1992)
Accurate activity classification is essential for the advancement of closed-loop control for left ventricular assist devices (LVADs), as it provides necessary feedback to adapt device operation to the patient's current state. Therefore, this study ai...

Prediction of mortality events of patients with acute heart failure in intensive care unit based on deep neural network.

Computer methods and programs in biomedicine
BACKGROUND: Acute heart failure (AHF) in the intensive care unit (ICU) is characterized by its criticality, rapid progression, complex and changeable condition, and its pathophysiological process involves the interaction of multiple organs and system...

Prediction of 90 day readmission in heart failure with preserved ejection fraction by interpretable machine learning.

ESC heart failure
AIMS: Certain critical risk factors of heart failure with preserved ejection fraction (HFpEF) patients were significantly different from those of heart failure with reduced ejection fraction (HFrEF) patients, resulting in the limitations of existing ...

Role of Artificial Intelligence and Machine Learning to Create Predictors, Enhance Molecular Understanding, and Implement Purposeful Programs for Myocardial Recovery.

Methodist DeBakey cardiovascular journal
Heart failure (HF) affects millions of individuals and causes hundreds of thousands of deaths each year in the United States. Despite the public health burden, medical and device therapies for HF significantly improve clinical outcomes and, in a subs...

Unsupervised machine learning to identify subphenotypes among cardiac intensive care unit patients with heart failure.

ESC heart failure
AIMS: Hospitalized patients with heart failure (HF) are a heterogeneous population, with multiple phenotypes proposed. Prior studies have not examined the biological phenotypes of critically ill patients with HF admitted to the contemporary cardiac i...

Prediction of 28-Day All-Cause Mortality in Heart Failure Patients with Clostridioides difficile Infection Using Machine Learning Models: Evidence from the MIMIC-IV Database.

Cardiology
INTRODUCTION: Heart failure (HF) may induce bowel hypoperfusion, leading to hypoxia of the villa of the bowel wall and the occurrence of Clostridioides difficile infection (CDI). However, the risk factors for the development of CDI in HF patients hav...