AIMC Topic: HEK293 Cells

Clear Filters Showing 31 to 40 of 73 articles

Directed Evolution of a Selective and Sensitive Serotonin Sensor via Machine Learning.

Cell
Serotonin plays a central role in cognition and is the target of most pharmaceuticals for psychiatric disorders. Existing drugs have limited efficacy; creation of improved versions will require better understanding of serotonergic circuitry, which ha...

MealTime-MS: A Machine Learning-Guided Real-Time Mass Spectrometry Analysis for Protein Identification and Efficient Dynamic Exclusion.

Journal of the American Society for Mass Spectrometry
Mass spectrometry-based proteomics technologies are prime methods for the high-throughput identification of proteins in complex biological samples. Nevertheless, there are still technical limitations that hinder the ability of mass spectrometry to id...

CRISPRpred(SEQ): a sequence-based method for sgRNA on target activity prediction using traditional machine learning.

BMC bioinformatics
BACKGROUND: The latest works on CRISPR genome editing tools mainly employs deep learning techniques. However, deep learning models lack explainability and they are harder to reproduce. We were motivated to build an accurate genome editing tool using ...

Revealing cytotoxic substructures in molecules using deep learning.

Journal of computer-aided molecular design
In drug development, late stage toxicity issues of a compound are the main cause of failure in clinical trials. In silico methods are therefore of high importance to guide the early design process to reduce time, costs and animal testing. Technical a...

Synthesis and biological characterization of MnZnEuDyFeO nanoparticles by sonochemical approach.

Materials science & engineering. C, Materials for biological applications
Metallic nanoparticles (NPs) possess unique properties which makes them attractive candidates for various applications especially in field of experimental medicine and drug delivery. Many approaches were developed to synthesize divers and customized ...

Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics.

Nature methods
We engineered light-gated channelrhodopsins (ChRs) whose current strength and light sensitivity enable minimally invasive neuronal circuit interrogation. Current ChR tools applied to the mammalian brain require intracranial surgery for transgene deli...

Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning.

Nature communications
Highly specific Cas9 nucleases derived from SpCas9 are valuable tools for genome editing, but their wide applications are hampered by a lack of knowledge governing guide RNA (gRNA) activity. Here, we perform a genome-scale screen to measure gRNA acti...

A Deep Neural Network for Predicting and Engineering Alternative Polyadenylation.

Cell
Alternative polyadenylation (APA) is a major driver of transcriptome diversity in human cells. Here, we use deep learning to predict APA from DNA sequence alone. We trained our model (APARENT, APA REgression NeT) on isoform expression data from over ...

Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning.

Nature methods
In mass-spectrometry-based proteomics, the identification and quantification of peptides and proteins heavily rely on sequence database searching or spectral library matching. The lack of accurate predictive models for fragment ion intensities impair...

PatcherBot: a single-cell electrophysiology robot for adherent cells and brain slices.

Journal of neural engineering
OBJECTIVE: Intracellular patch-clamp electrophysiology, one of the most ubiquitous, high-fidelity techniques in biophysics, remains laborious and low-throughput. While previous efforts have succeeded at automating some steps of the technique, here we...