AIMC Topic: Hospitalization

Clear Filters Showing 21 to 30 of 498 articles

Initial seizure episodes risk factors identification during hospitalization of ICU patients: A retrospective analysis of the eICU collaborative research database.

Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
BACKGROUND: We aimed to identify risk factors for initial seizure episodes in ICU patients using various machine learning algorithms.

Daily Automated Prediction of Delirium Risk in Hospitalized Patients: Model Development and Validation.

JMIR medical informatics
BACKGROUND: Delirium is common in hospitalized patients and is correlated with increased morbidity and mortality. Despite this, delirium is underdiagnosed, and many institutions do not have sufficient resources to consistently apply effective screeni...

Constructing a screening model to identify patients at high risk of hospital-acquired influenza on admission to hospital.

Frontiers in public health
OBJECTIVE: To develop a machine learning (ML)-based admission screening model for hospital-acquired (HA) influenza using routinely available data to support early clinical intervention.

Unraveling relevant cross-waves pattern drifts in patient-hospital risk factors among hospitalized COVID-19 patients using explainable machine learning methods.

BMC infectious diseases
BACKGROUND: Several studies explored factors related to adverse clinical outcomes among COVID-19 patients but lacked analysis of the impact of the temporal data shifts on the strength of association between different predictors and adverse outcomes. ...

Remdesivir associated with reduced mortality in hospitalized COVID-19 patients: treatment effectiveness using real-world data and natural language processing.

BMC infectious diseases
BACKGROUND: Remdesivir (RDV) was the first antiviral approved for mild-to-moderate COVID-19 and for those patients at risk for progression to severe disease after clinical trials supported its association with improved outcomes. Real-world evidence (...

Oxidative Stress Markers and Prediction of Severity With a Machine Learning Approach in Hospitalized Patients With COVID-19 and Severe Lung Disease: Observational, Retrospective, Single-Center Feasibility Study.

JMIR formative research
BACKGROUND: Serious pulmonary pathologies of infectious, viral, or bacterial origin are accompanied by inflammation and an increase in oxidative stress (OS). In these situations, biological measurements of OS are technically difficult to obtain, and ...

Cost-Effectiveness Analysis of a Machine Learning-Based eHealth System to Predict and Reduce Emergency Department Visits and Unscheduled Hospitalizations of Older People Living at Home: Retrospective Study.

JMIR formative research
BACKGROUND: Dependent older people or those losing their autonomy are at risk of emergency hospitalization. Digital systems that monitor health remotely could be useful in reducing these visits by detecting worsening health conditions earlier. Howeve...

Application of an interpretable machine learning method to predict the risk of death during hospitalization in patients with acute myocardial infarction combined with diabetes mellitus.

Acta cardiologica
BACKGROUND: Predicting the prognosis of patients with acute myocardial infarction (AMI) combined with diabetes mellitus (DM) is crucial due to high in-hospital mortality rates. This study aims to develop and validate a mortality risk prediction model...

Predicting hospital admissions, ICU utilization, and prolonged length of stay among febrile pediatric emergency department patients using incomplete and imbalanced electronic health record (EHR) data strategies.

International journal of medical informatics
OBJECTIVE: Determine the efficacy of commonly used approaches to handling missing and/or imbalanced Electronic Health Record (EHR) data on the performance of predictive models targeting risk of admission, intensive care unit (ICU) use, or prolonged l...