AIMC Topic: Hospitalization

Clear Filters Showing 21 to 30 of 481 articles

Machine learning algorithms applied to the diagnosis of COVID-19 based on epidemiological, clinical, and laboratory data.

Jornal brasileiro de pneumologia : publicacao oficial da Sociedade Brasileira de Pneumologia e Tisilogia
OBJECTIVE: To predict COVID-19 in hospitalized patients with SARS in a city in southern Brazil by using machine learning algorithms.

Natural language processing for identifying major bleeding risk in hospitalised medical patients.

Computers in biology and medicine
BACKGROUND: Major bleeding is a severe complication in critically ill medical patients, resulting in significant morbidity, mortality, and healthcare costs. This study aims to assess the incidence and risk factors for major bleeding in hospitalised m...

Machine learning for risk prediction of acute kidney injury in patients with diabetes mellitus combined with heart failure during hospitalization.

Scientific reports
This study aimed to develop a machine learning (ML) model for predicting the risk of acute kidney injury (AKI) in diabetic patients with heart failure (HF) during hospitalization. Using data from 1,457 patients in the MIMIC-IV database, the study ide...

External validation of artificial intelligence for detection of heart failure with preserved ejection fraction.

Nature communications
Artificial intelligence (AI) models to identify heart failure (HF) with preserved ejection fraction (HFpEF) based on deep-learning of echocardiograms could help address under-recognition in clinical practice, but they require extensive validation, pa...

Measurement of adipose body composition using an artificial intelligence-based CT Protocol and its association with severe acute pancreatitis in hospitalized patients.

Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver
BACKGROUND/OBJECTIVES: The clinical utility of body composition in predicting the severity of acute pancreatitis (AP) remains unclear. We aimed to measure body composition using artificial intelligence (AI) to predict severe AP in hospitalized patien...

Using Machine Learning to Identify Social Determinants of Health that Impact Discharge Disposition for Hospitalized Patients.

Journal of the American Medical Directors Association
OBJECTIVE: To identify self-reported social determinants of health (SDOH) among hospitalized patients that predict discharge to a skilled nursing facility (SNF).

Spatio-temporal epidemic forecasting using mobility data with LSTM networks and attention mechanism.

Scientific reports
The outbreak of infectious diseases can have profound impacts on socio-economic balances globally. Accurate short-term forecasting of infectious diseases is crucial for policymakers and healthcare systems. This study proposes a novel deep learning ap...

Identification of heart failure subtypes using transformer-based deep learning modelling: a population-based study of 379,108 individuals.

EBioMedicine
BACKGROUND: Heart failure (HF) is a complex syndrome with varied presentations and progression patterns. Traditional classification systems based on left ventricular ejection fraction (LVEF) have limitations in capturing the heterogeneity of HF. We a...

Construction of a machine learning-based interpretable prediction model for acute kidney injury in hospitalized patients.

Scientific reports
In this observational study, we used data from 59,936 hospitalized adults to construct a model. For the models constructed with all 53 variables, all five models achieved acceptable performance with the validation cohort, with the extreme gradient bo...

Machine Learning Predicts Bleeding Risk in Atrial Fibrillation Patients on Direct Oral Anticoagulant.

The American journal of cardiology
Predicting major bleeding in nonvalvular atrial fibrillation (AF) patients on direct oral anticoagulants (DOACs) is crucial for personalized care. Alternatives like left atrial appendage closure devices lower stroke risk with fewer nonprocedural blee...