AIMC Topic: Image Interpretation, Computer-Assisted

Clear Filters Showing 251 to 260 of 2811 articles

Unpaired Dual-Modal Image Complementation Learning for Single-Modal Medical Image Segmentation.

IEEE transactions on bio-medical engineering
OBJECTIVE: Multi-modal MR/CT image segmentation is an important task in disease diagnosis and treatment, but it is usually difficult to acquire aligned multi-modal images of a patient in clinical practice due to the high cost and specific allergic re...

S2P-Matching: Self-Supervised Patch-Based Matching Using Transformer for Capsule Endoscopic Images Stitching.

IEEE transactions on bio-medical engineering
The Magnetically Controlled Capsule Endoscopy (MCCE) has a limited shooting range, resulting in capturing numerous fragmented images and an inability to precisely locate and examine the region of interest (ROI) as traditional endoscopy can. Addressin...

Deep Learning-Based Tract Classification of Preoperative DWI Tractography Advances the Prediction of Short-Term Postoperative Language Improvement in Children With Drug-Resistant Epilepsy.

IEEE transactions on bio-medical engineering
OBJECTIVE: To develop an innovative deep convolutional neural network (DCNN)-based tract classification to enhance the prediction of short-term postoperative language improvement using axonal connectivity markers derived from specific language modula...

Systematic application of saliency maps to explain the decisions of convolutional neural networks for glaucoma diagnosis based on disc and cup geometry.

Biomedical physics & engineering express
This paper systematically evaluates saliency methods as explainability tools for convolutional neural networks trained to diagnose glaucoma using simplified eye fundus images that contain only disc and cup outlines. These simplified images, a methodo...

Motion-Compensated Multishot Pancreatic Diffusion-Weighted Imaging With Deep Learning-Based Denoising.

Investigative radiology
OBJECTIVES: Pancreatic diffusion-weighted imaging (DWI) has numerous clinical applications, but conventional single-shot methods suffer from off resonance-induced artifacts like distortion and blurring while cardiovascular motion-induced phase incons...

Challenges in standardizing preimplantation kidney biopsy assessments and the potential of AI-Driven solutions.

Current opinion in nephrology and hypertension
PURPOSE OF REVIEW: This review explores the variability in preimplantation kidney biopsy processing methods, emphasizing their impact on histological interpretation and allocation decisions driven by biopsy findings. With the increasing use of artifi...

TractGraphFormer: Anatomically informed hybrid graph CNN-transformer network for interpretable sex and age prediction from diffusion MRI tractography.

Medical image analysis
The relationship between brain connections and non-imaging phenotypes is increasingly studied using deep neural networks. However, the local and global properties of the brain's white matter networks are often overlooked in convolutional network desi...

Enhancing lesion detection in automated breast ultrasound using unsupervised multi-view contrastive learning with 3D DETR.

Medical image analysis
The inherent variability of lesions poses challenges in leveraging AI in 3D automated breast ultrasound (ABUS) for lesion detection. Traditional methods based on single scans have fallen short compared to comprehensive evaluations by experienced sono...

Advances in the Application of Artificial Intelligence in the Ultrasound Diagnosis of Vulnerable Carotid Atherosclerotic Plaque.

Ultrasound in medicine & biology
Vulnerable atherosclerotic plaque is a type of plaque that poses a significant risk of high mortality in patients with cardiovascular disease. Ultrasound has long been used for carotid atherosclerosis screening and plaque assessment due to its safety...

Machine learning-based assessment of morphometric abnormalities distinguishes bipolar disorder and major depressive disorder.

Neuroradiology
INTRODUCTION: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI a...