AIMC Topic: Image Interpretation, Computer-Assisted

Clear Filters Showing 381 to 390 of 2819 articles

Breath-hold diffusion-weighted MR imaging (DWI) using deep learning reconstruction: Comparison with navigator triggered DWI in patients with malignant liver tumors.

Radiography (London, England : 1995)
INTRODUCTION: This study investigated the feasibility of single breath-hold (BH) diffusion-weighted MR imaging (DWI) using deep learning reconstruction (DLR) compared to navigator triggered (NT) DWI in patients with malignant liver tumors.

Enhancing thin slice 3D T2-weighted prostate MRI with super-resolution deep learning reconstruction: Impact on image quality and PI-RADS assessment.

Magnetic resonance imaging
PURPOSES: This study aimed to assess the effectiveness of Super-Resolution Deep Learning Reconstruction (SR-DLR) -a deep learning-based technique that enhances image resolution and quality during MRI reconstruction- in improving the image quality of ...

Let it shine: Autofluorescence of Papanicolaou-stain improves AI-based cytological oral cancer detection.

Computers in biology and medicine
BACKGROUND AND OBJECTIVES: Oral cancer is a global health challenge. The disease can be successfully treated if detected early, but the survival rate drops significantly for late stage cases. There is a growing interest in a shift from the current st...

MRI classification of progressive supranuclear palsy, Parkinson disease and controls using deep learning and machine learning algorithms for the identification of regions and tracts of interest as potential biomarkers.

Computers in biology and medicine
BACKGROUND: Quantitative magnetic resonance imaging (MRI) analysis has shown promise in differentiating neurodegenerative Parkinsonian syndromes and has significantly advanced our understanding of diseases like progressive supranuclear palsy (PSP) in...

MoMA: Momentum contrastive learning with multi-head attention-based knowledge distillation for histopathology image analysis.

Medical image analysis
There is no doubt that advanced artificial intelligence models and high quality data are the keys to success in developing computational pathology tools. Although the overall volume of pathology data keeps increasing, a lack of quality data is a comm...

Automated Segmentation of MRI White Matter Hyperintensities in 8421 Patients with Acute Ischemic Stroke.

AJNR. American journal of neuroradiology
BACKGROUND AND PURPOSE: To date, only a few small studies have attempted deep learning-based automatic segmentation of white matter hyperintensity (WMH) lesions in patients with cerebral infarction; this issue is complicated because stroke-related le...

Have We Solved Glottis Segmentation? Review and Commentary.

Journal of voice : official journal of the Voice Foundation
Quantification of voice physiology has been a key research goal. Segmenting the glottal area to describe the vocal fold motion has seen increased attention in the last two decades. However, researchers struggled to fully automatize the segmentation t...

Interpretable deep learning architecture for gastrointestinal disease detection: A Tri-stage approach with PCA and XAI.

Computers in biology and medicine
GI abnormalities significantly increase mortality rates and impose considerable strain on healthcare systems, underscoring the essential requirement for rapid detection, precise diagnosis, and efficient strategic treatment. To develop a CAD system, t...