AIMC Topic: Image Processing, Computer-Assisted

Clear Filters Showing 391 to 400 of 9585 articles

Trade-off of different deep learning-based auto-segmentation approaches for treatment planning of pediatric craniospinal irradiation autocontouring of OARs for pediatric CSI.

Medical physics
BACKGROUND: As auto-segmentation tools become integral to radiotherapy, more commercial products emerge. However, they may not always suit our needs. One notable example is the use of adult-trained commercial software for the contouring of organs at ...

Uncertainty quantification for CT dosimetry based on 10 281 subjects using automatic image segmentation and fast Monte Carlo calculations.

Medical physics
BACKGROUND: Computed tomography (CT) scans are a major source of medical radiation exposure worldwide. In countries like China, the frequency of CT scans has grown rapidly, thus making available a large volume of organ dose information. With modern c...

A CNN-transformer fusion network for predicting high-grade patterns in stage IA invasive lung adenocarcinoma.

Medical physics
BACKGROUND: Invasive lung adenocarcinoma (LUAD) with the high-grade patterns (HGPs) has the potential for rapid metastasis and frequent recurrence. Therefore, accurately predicting the presence of high-grade components is crucial for doctors to devel...

Predictive models of epidermal growth factor receptor mutation in lung adenocarcinoma using PET/CT-based radiomics features.

Medical physics
BACKGROUND: Lung adenocarcinoma (LAC) comprises a substantial subset of non-small cell lung cancer (NSCLC) diagnoses, where epidermal growth factor receptor (EGFR) mutations play a pivotal role as indicators for therapeutic intervention with targeted...

Enhancing brain age estimation under uncertainty: A spectral-normalized neural gaussian process approach utilizing 2.5D slicing.

NeuroImage
Brain age gap, the difference between estimated brain age and chronological age via magnetic resonance imaging, has emerged as a pivotal biomarker in the detection of brain abnormalities. While deep learning is accurate in estimating brain age, the a...

Clinically applicable semi-supervised learning framework for multiple organs at risk and tumor delineation in lung cancer brachytherapy.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: The generalization ability of deep learning-based automatic segmentation techniques for lung cancer in practical clinical applications remains under-validated. We reported an investigation that validated a robust semi-supervised conditional ...

Enhancing cell instance segmentation in scanning electron microscopy images via a deep contour closing operator.

Computers in biology and medicine
Accurately segmenting and individualizing cells in scanning electron microscopy (SEM) images is a highly promising technique for elucidating tissue architecture in oncology. While current artificial intelligence (AI)-based methods are effective, erro...

A novel skeletal muscle quantitative method and deep learning-based sarcopenia diagnosis for cervical cancer patients treated with radiotherapy.

Medical physics
BACKGROUND: Sarcopenia is associated with decreased survival in cervical cancer patients treated with radiotherapy. Cone-beam computed tomography (CBCT) was widely used in image-guided radiotherapy. Sarcopenia is assessed by the skeletal muscle index...

Enhancing synchrotron radiation micro-CT images using deep learning: an application of Noise2Inverse on bone imaging.

Journal of synchrotron radiation
In bone-imaging research, in situ synchrotron radiation micro-computed tomography (SRµCT) mechanical tests are used to investigate the mechanical properties of bone in relation to its microstructure. Low-dose computed tomography (CT) is used to prese...

A hybrid parallel convolutional spiking neural network for enhanced skin cancer detection.

Scientific reports
The most widespread kind of cancer, affecting millions of lives is skin cancer. When the condition of illness worsens, the chance of survival is reduced, and thus detection of skin cancer is extremely difficult. Hence, this paper introduces a new mod...