AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Intensive Care Units

Showing 41 to 50 of 603 articles

Clear Filters

Task-oriented robotic rehabilitation for back mobility and functioning in a post-intensive care unit obese patient: A case report.

Journal of back and musculoskeletal rehabilitation
BackgroundIntensive care unit (ICU) acquired weakness is a detrimental condition characterized by muscle weakness, difficulty in weaning from mechanical ventilation, impaired mobility, and functional limitations, severely affecting overall quality of...

Development and validation of interpretable machine learning models for triage patients admitted to the intensive care unit.

PloS one
OBJECTIVES: Developing and validating interpretable machine learning (ML) models for predicting whether triaged patients need to be admitted to the intensive care unit (ICU).

[Establishing of mortality predictive model for elderly critically ill patients using simple bedside indicators and interpretable machine learning algorithms].

Zhonghua wei zhong bing ji jiu yi xue
OBJECTIVE: To explore the feasibility of incorporating simple bedside indicators into death predictive model for elderly critically ill patients based on interpretability machine learning algorithms, providing a new scheme for clinical disease assess...

Machine Learning-Based Mortality Prediction for Acute Gastrointestinal Bleeding Patients Admitted to Intensive Care Unit.

Current medical science
OBJECTIVE: The study aimed to develop machine learning (ML) models to predict the mortality of patients with acute gastrointestinal bleeding (AGIB) in the intensive care unit (ICU) and compared their prognostic performance with that of Acute Physiolo...

Predicting Agitation-Sedation Levels in Intensive Care Unit Patients: Development of an Ensemble Model.

JMIR medical informatics
BACKGROUND: Agitation and sedation management is critical in intensive care as it affects patient safety. Traditional nursing assessments suffer from low frequency and subjectivity. Automating these assessments can boost intensive care unit (ICU) eff...

Convolutional long short-term memory neural network integrated with classifier in classifying type of asynchrony breathing in mechanically ventilated patients.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Asynchronous breathing (AB) occurs when a mechanically ventilated patient's breathing does not align with the mechanical ventilator (MV). Asynchrony can negatively impact recovery and outcome, and/or hinder MV management. A ...

An effective multi-step feature selection framework for clinical outcome prediction using electronic medical records.

BMC medical informatics and decision making
BACKGROUND: Identifying key variables is essential for developing clinical outcome prediction models based on high-dimensional electronic medical records (EMR). However, despite the abundance of feature selection (FS) methods available, challenges re...

Methods for estimating resting energy expenditure in intensive care patients: A comparative study of predictive equations with machine learning and deep learning approaches.

Computer methods and programs in biomedicine
BACKGROUND: Accurate estimation of resting energy expenditure (REE) is critical for guiding nutritional therapy in critically ill patients. While indirect calorimetry (IC) is the gold standard for REE measurement, it is not routinely feasible in clin...