AIMC Topic: Isocitrate Dehydrogenase

Clear Filters Showing 31 to 40 of 67 articles

neoDL: a novel neoantigen intrinsic feature-based deep learning model identifies IDH wild-type glioblastomas with the longest survival.

BMC bioinformatics
BACKGROUND: Neoantigen based personalized immune therapies achieve promising results in melanoma and lung cancer, but few neoantigen based models perform well in IDH wild-type GBM, and the association between neoantigen intrinsic features and prognos...

Generative adversarial network for glioblastoma ensures morphologic variations and improves diagnostic model for isocitrate dehydrogenase mutant type.

Scientific reports
Generative adversarial network (GAN) creates synthetic images to increase data quantity, but whether GAN ensures meaningful morphologic variations is still unknown. We investigated whether GAN-based synthetic images provide sufficient morphologic var...

Differentiating IDH status in human gliomas using machine learning and multiparametric MR/PET.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: The purpose of this study was to develop a voxel-wise clustering method of multiparametric magnetic resonance imaging (MRI) and 3,4-dihydroxy-6-[F]-fluoro-L-phenylalanine (FDOPA) positron emission tomography (PET) images using an unsuperv...

Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach.

BioMed research international
PURPOSE: Preoperative prediction of isocitrate dehydrogenase 1 (IDH1) mutation in lower-grade gliomas (LGGs) is crucial for clinical decision-making. This study aimed to examine the predictive value of a machine learning approach using qualitative an...

Noninvasive Determination of and 1p19q Status of Lower-grade Gliomas Using MRI Radiomics: A Systematic Review.

AJNR. American journal of neuroradiology
BACKGROUND: Determination of () status and, if -mutant, assessing 1p19q codeletion are an important component of diagnosis of World Health Organization grades II/III or lower-grade gliomas. This has led to research into noninvasively correlating ima...

A machine learning analysis of a "normal-like" IDH-WT diffuse glioma transcriptomic subgroup associated with prolonged survival reveals novel immune and neurotransmitter-related actionable targets.

BMC medicine
BACKGROUND: Classification of primary central nervous system tumors according to the World Health Organization guidelines follows the integration of histologic interpretation with molecular information and aims at providing the most precise prognosis...

Diagnostic accuracy and potential covariates for machine learning to identify IDH mutations in glioma patients: evidence from a meta-analysis.

European radiology
OBJECTIVES: To assess the diagnostic accuracy of machine learning (ML) in predicting isocitrate dehydrogenase (IDH) mutations in patients with glioma and to identify potential covariates that could influence the diagnostic performance of ML.

Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction.

European radiology
BACKGROUND AND PURPOSE: Recent studies have highlighted the importance of isocitrate dehydrogenase (IDH) mutational status in stratifying biologically distinct subgroups of gliomas. This study aimed to evaluate whether MRI-based radiomic features cou...