AIMC Topic: Isocitrate Dehydrogenase

Clear Filters Showing 31 to 40 of 61 articles

A machine learning analysis of a "normal-like" IDH-WT diffuse glioma transcriptomic subgroup associated with prolonged survival reveals novel immune and neurotransmitter-related actionable targets.

BMC medicine
BACKGROUND: Classification of primary central nervous system tumors according to the World Health Organization guidelines follows the integration of histologic interpretation with molecular information and aims at providing the most precise prognosis...

Diagnostic accuracy and potential covariates for machine learning to identify IDH mutations in glioma patients: evidence from a meta-analysis.

European radiology
OBJECTIVES: To assess the diagnostic accuracy of machine learning (ML) in predicting isocitrate dehydrogenase (IDH) mutations in patients with glioma and to identify potential covariates that could influence the diagnostic performance of ML.

Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction.

European radiology
BACKGROUND AND PURPOSE: Recent studies have highlighted the importance of isocitrate dehydrogenase (IDH) mutational status in stratifying biologically distinct subgroups of gliomas. This study aimed to evaluate whether MRI-based radiomic features cou...

Prediction of IDH and TERT promoter mutations in low-grade glioma from magnetic resonance images using a convolutional neural network.

Scientific reports
Identification of genotypes is crucial for treatment of glioma. Here, we developed a method to predict tumor genotypes using a pretrained convolutional neural network (CNN) from magnetic resonance (MR) images and compared the accuracy to that of a di...

Predicting the 1p/19q Codeletion Status of Presumed Low-Grade Glioma with an Externally Validated Machine Learning Algorithm.

Clinical cancer research : an official journal of the American Association for Cancer Research
PURPOSE: Patients with 1p/19q codeleted low-grade glioma (LGG) have longer overall survival and better treatment response than patients with 1p/19q intact tumors. Therefore, it is relevant to know the 1p/19q status. To investigate whether the 1p/19q ...

Prediction of IDH1 Mutation Status in Glioblastoma Using Machine Learning Technique Based on Quantitative Radiomic Data.

World neurosurgery
OBJECTIVE: Isocitrate dehydrogenase 1 (IDH1) mutation status is an independent favorable prognostic factor for glioblastoma (GBM) and is usually determined by sequencing or immunohistochemistry. An accurate prediction of IDH1 mutation status via noni...