AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Liver

Showing 51 to 60 of 556 articles

Clear Filters

Liver tumor segmentation method combining multi-axis attention and conditional generative adversarial networks.

PloS one
In modern medical imaging-assisted therapies, manual annotation is commonly employed for liver and tumor segmentation in abdominal CT images. However, this approach suffers from low efficiency and poor accuracy. With the development of deep learning,...

A Multi-Task Based Deep Learning Framework With Landmark Detection for MRI Couinaud Segmentation.

IEEE journal of translational engineering in health and medicine
To achieve precise Couinaud liver segmentation in preoperative planning for hepatic surgery, accommodating the complex anatomy and significant variations, optimizing surgical approaches, reducing postoperative complications, and preserving liver func...

Utility of AI digital pathology as an aid for pathologists scoring fibrosis in MASH.

Journal of hepatology
BACKGROUND & AIMS: Intra and inter-pathologist variability poses a significant challenge in metabolic dysfunction-associated steatohepatitis (MASH) biopsy evaluation, leading to suboptimal selection of patients and confounded assessment of histologic...

Convolutional neural network classification of ultrasound parametric images based on echo-envelope statistics for the quantitative diagnosis of liver steatosis.

Journal of medical ultrasonics (2001)
PURPOSE: Early detection and quantitative evaluation of liver steatosis are crucial. Therefore, this study investigated a method for classifying ultrasound images to fatty liver grades based on echo-envelope statistics (ES) and convolutional neural n...

Generalizability of lesion detection and segmentation when ScaleNAS is trained on a large multi-organ dataset and validated in the liver.

Medical physics
BACKGROUND: Tumor assessment through imaging is crucial for diagnosing and treating cancer. Lesions in the liver, a common site for metastatic disease, are particularly challenging to accurately detect and segment. This labor-intensive task is subjec...

Radiomics-based automated machine learning for differentiating focal liver lesions on unenhanced computed tomography.

Abdominal radiology (New York)
BACKGROUND & AIMS: Enhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML) algorithms to differentiate between benign and malignant focal liver lesions on the basis...

Accuracy of deep learning-based attenuation correction in Tc-GSA SPECT/CT hepatic imaging.

Radiography (London, England : 1995)
INTRODUCTION: Attenuation correction (AC) is necessary for accurate assessment of radioactive distribution in single photon emission computed tomography (SPECT). The method of computed tomography-based AC (CTAC) is widely used because of its accuracy...

Automatic localization and deep convolutional generative adversarial network-based classification of focal liver lesions in computed tomography images: A preliminary study.

Journal of gastroenterology and hepatology
BACKGROUND AND AIM: Computed tomography of the abdomen exhibits subtle and complex features of liver lesions, subjectively interpreted by physicians. We developed a deep learning-based localization and classification (DLLC) system for focal liver les...

Development of a Deep Learning Model for Classification of Hepatic Steatosis from Clinical Standard Ultrasound.

Ultrasound in medicine & biology
OBJECTIVE: Early detection and monitoring of hepatic steatosis can help establish appropriate preventative measures against progression to more advanced disease. We aimed to develop a deep learning (DL) program for classification of hepatic steatosis...