AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Logistic Models

Showing 21 to 30 of 1118 articles

Clear Filters

Enlightened prognosis: Hepatitis prediction with an explainable machine learning approach.

PloS one
Hepatitis is a widespread inflammatory condition of the liver, presenting a formidable global health challenge. Accurate and timely detection of hepatitis is crucial for effective patient management, yet existing methods exhibit limitations that unde...

Accurate prediction of mediolateral episiotomy risk during labor: development and verification of an artificial intelligence model.

BMC pregnancy and childbirth
OBJECTIVE: The study developed an intelligent online evaluation system for mediolateral episiotomy, which incorporated machine learning algorithms and integrated maternal physiological data collected during delivery.

Investigating perioperative pressure injuries and factors influencing them with imbalanced samples using a Synthetic Minority Over-sampling Technique.

Bioscience trends
This study investigates the use of machine learning (ML) models combined with a Synthetic Minority Over-sampling Technique (SMOTE) and its variants to predict perioperative pressure injuries (PIs) in an imbalanced dataset. PIs are a significant healt...

Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression.

ACS nano
Optical spectroscopy, a noninvasive molecular sensing technique, offers valuable insights into material characterization, molecule identification, and biosample analysis. Despite the informativeness of high-dimensional optical spectra, their interpre...

Comparative study of XGBoost and logistic regression for predicting sarcopenia in postsurgical gastric cancer patients.

Scientific reports
The use of machine learning (ML) techniques, particularly XGBoost and logistic regression, to predict sarcopenia among postsurgical gastric cancer patients has gained significant attention in recent research. Sarcopenia, characterized by the progress...

Temporal validation of machine learning models for pre-eclampsia prediction using routinely collected maternal characteristics: A validation study.

Computers in biology and medicine
BACKGROUND: Pre-eclampsia (PE) contributes to more than one-fourth of all maternal deaths and half a million newborn deaths worldwide every year. Early screening and interventions can reduce PE incidence and related complications. We aim to 1) tempor...

Development of a machine learning-based diagnostic model using hematological parameters to differentiate periductal mastitis from granulomatous lobular mastitis.

Science progress
ObjectiveNonpuerperal mastitis (NPM) is an inflammatory condition, including periductal mastitis (PDM) and granulomatous lobular mastitis (GLM). The clinical manifestations of PDM and GLM are highly similar, posing significant challenges in their dif...

Is artificial intelligence superior to traditional regression methods in predicting prognosis of adult traumatic brain injury?

Neurosurgical review
Traumatic brain injury (TBI) is a significant global health issue with high morbidity and mortality rates. Recent studies have shown that machine learning algorithms outperform traditional logistic regression models in predicting functional outcomes ...

Interpretable machine learning model for early prediction of disseminated intravascular coagulation in critically ill children.

Scientific reports
Disseminated intravascular coagulation (DIC) is a thrombo-hemorrhagic disorder that can be life-threatening in critically ill children, and the quest for an accurate and efficient method for early DIC prediction is of paramount importance. Candidate ...