AIMC Topic: Lung Neoplasms

Clear Filters Showing 391 to 400 of 1619 articles

Training immunophenotyping deep learning models with the same-section ground truth cell label derivation method improves virtual staining accuracy.

Frontiers in immunology
INTRODUCTION: Deep learning (DL) models predicting biomarker expression in images of hematoxylin and eosin (H&E)-stained tissues can improve access to multi-marker immunophenotyping, crucial for therapeutic monitoring, biomarker discovery, and person...

Integrated multi-omics analysis and machine learning to refine molecular subtypes, prognosis, and immunotherapy in lung adenocarcinoma.

Functional & integrative genomics
Lung adenocarcinoma (LUAD) has a malignant characteristic that is highly aggressive and prone to metastasis. There is still a lack of suitable biomarkers to facilitate the refinement of precision-based therapeutic regimens. We used a combination of 1...

Deep learning model integrating cfDNA methylation and fragment size profiles for lung cancer diagnosis.

Scientific reports
Detecting aberrant cell-free DNA (cfDNA) methylation is a promising strategy for lung cancer diagnosis. In this study, our aim is to identify methylation markers to distinguish patients with lung cancer from healthy individuals. Additionally, we soug...

Multi-omics deep learning for radiation pneumonitis prediction in lung cancer patients underwent volumetric modulated arc therapy.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: To evaluate the feasibility and accuracy of radiomics, dosiomics, and deep learning (DL) in predicting Radiation Pneumonitis (RP) in lung cancer patients underwent volumetric modulated arc therapy (VMAT) to improve radiother...

A Multiscale Connected UNet for the Segmentation of Lung Cancer Cells in Pathology Sections Stained Using Rapid On-Site Cytopathological Evaluation.

The American journal of pathology
Lung cancer is an increasingly serious health problem worldwide, and early detection and diagnosis are crucial for successful treatment. With the development of artificial intelligence and the growth of data volume, machine learning techniques can pl...

Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment.

Nature medicine
In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (T...

Decoding temporal heterogeneity in NSCLC through machine learning and prognostic model construction.

World journal of surgical oncology
BACKGROUND: Non-small cell lung cancer (NSCLC) is a prevalent and heterogeneous disease with significant genomic variations between the early and advanced stages. The identification of key genes and pathways driving NSCLC tumor progression is critica...

The efficacy of machine learning models in lung cancer risk prediction with explainability.

PloS one
Among many types of cancers, to date, lung cancer remains one of the deadliest cancers around the world. Many researchers, scientists, doctors, and people from other fields continuously contribute to this subject regarding early prediction and diagno...

Histological Subtype Classification of Non-Small Cell Lung Cancer with Radiomics and 3D Convolutional Neural Networks.

Journal of imaging informatics in medicine
Non-small cell lung carcinoma (NSCLC) is the most common type of pulmonary cancer, one of the deadliest malignant tumors worldwide. Given the increased emphasis on the precise management of lung cancer, identifying various subtypes of NSCLC has becom...