AIMC Topic: Lung Neoplasms

Clear Filters Showing 391 to 400 of 1668 articles

Evaluating the accuracy of lung-RADS score extraction from radiology reports: Manual entry versus natural language processing.

International journal of medical informatics
INTRODUCTION: Radiology scoring systems are critical to the success of lung cancer screening (LCS) programs, impacting patient care, adherence to follow-up, data management and reporting, and program evaluation. LungCT ScreeningReporting and Data Sys...

Detecting pulmonary malignancy against benign nodules using noninvasive cell-free DNA fragmentomics assay.

ESMO open
BACKGROUND: Early screening using low-dose computed tomography (LDCT) can reduce mortality caused by non-small-cell lung cancer. However, ∼25% of the 'suspicious' pulmonary nodules identified by LDCT are later confirmed benign through resection surge...

CT-based deep learning radiomics biomarker for programmed cell death ligand 1 expression in non-small cell lung cancer.

BMC medical imaging
BACKGROUND: Programmed cell death ligand 1 (PD-L1), as a reliable predictive biomarker, plays an important role in guiding immunotherapy of lung cancer. To investigate the value of CT-based deep learning radiomics signature to predict PD-L1 expressio...

The impact of high-order features on performance of radiomics studies in CT non-small cell lung cancer.

Clinical imaging
High-order radiomic features have been shown to produce high performance models in a variety of scenarios. However, models trained without high-order features have shown similar performance, raising the question of whether high-order features are wor...

SAFER: sub-hypergraph attention-based neural network for predicting effective responses to dose combinations.

BMC bioinformatics
BACKGROUND: The potential benefits of drug combination synergy in cancer medicine are significant, yet the risks must be carefully managed due to the possibility of increased toxicity. Although artificial intelligence applications have demonstrated n...

Machine-learning and scRNA-Seq-based diagnostic and prognostic models illustrating survival and therapy response of lung adenocarcinoma.

Genes and immunity
Lung cancer is a major cause accounting for cancer-related mortalities, with lung adenocarcinoma (LUAD) being the most prevalent subtype. Given the high clinical and cellular heterogeneities of LUAD, accurate diagnosis and prognosis are crucial to av...

A prognostic framework for predicting lung signet ring cell carcinoma via a machine learning based cox proportional hazard model.

Journal of cancer research and clinical oncology
PURPOSE: Signet ring cell carcinoma (SRCC) is a rare type of lung cancer. The conventional survival nomogram used to predict lung cancer performs poorly for SRCC. Therefore, a novel nomogram specifically for studying SRCC is highly required.

Machine learning computational model to predict lung cancer using electronic medical records.

Cancer epidemiology
BACKGROUND: Lung cancer (LC) screening using low-dose computed tomography (CT) is recommended according to standard risk criteria or personalized risk calculators. Machine learning (ML) models that can predict disease risk are an emerging method in m...

Combining Metabolomics and Machine Learning to Identify Diagnostic and Prognostic Biomarkers in Patients with Non-Small Cell Lung Cancer Pre- and Post-Radiation Therapy.

Biomolecules
Lung cancer is the leading cause of cancer-related deaths globally, with non-small cell lung cancer (NSCLC) accounting for over 85% of cases and poor prognosis in advanced stages. This study explored shifts in circulating metabolite levels in NSCLC p...