AIMC Topic: Lung Neoplasms

Clear Filters Showing 401 to 410 of 1619 articles

Res-TransNet: A Hybrid deep Learning Network for Predicting Pathological Subtypes of lung Adenocarcinoma in CT Images.

Journal of imaging informatics in medicine
This study aims to develop a CT-based hybrid deep learning network to predict pathological subtypes of early-stage lung adenocarcinoma by integrating residual network (ResNet) with Vision Transformer (ViT). A total of 1411 pathologically confirmed gr...

Prediction of Epidermal Growth Factor Receptor Mutation Subtypes in Non-Small Cell Lung Cancer From Hematoxylin and Eosin-Stained Slides Using Deep Learning.

Laboratory investigation; a journal of technical methods and pathology
Accurate assessment of epidermal growth factor receptor (EGFR) mutation status and subtype is critical for the treatment of non-small cell lung cancer patients. Conventional molecular testing methods for detecting EGFR mutations have limitations. In ...

Artificial intelligence-driven computer aided diagnosis system provides similar diagnosis value compared with doctors' evaluation in lung cancer screening.

BMC medical imaging
OBJECTIVE: To evaluate the consistency between doctors and artificial intelligence (AI) software in analysing and diagnosing pulmonary nodules, and assess whether the characteristics of pulmonary nodules derived from the two methods are consistent fo...

Mapping the landscape of histomorphological cancer phenotypes using self-supervised learning on unannotated pathology slides.

Nature communications
Cancer diagnosis and management depend upon the extraction of complex information from microscopy images by pathologists, which requires time-consuming expert interpretation prone to human bias. Supervised deep learning approaches have proven powerfu...

Thinking Beyond Disease Silos: Dysregulated Genes Common in Tuberculosis and Lung Cancer as Identified by Systems Biology and Machine Learning.

Omics : a journal of integrative biology
The traditional way of thinking about human diseases across clinical and narrow phenomics silos often masks the underlying shared molecular substrates across human diseases. One Health and planetary health fields particularly address such complexitie...

Artificial intelligence-assisted quantitative CT analysis of airway changes following SABR for central lung tumors.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
INTRODUCTION: Use of stereotactic ablative radiotherapy (SABR) for central lung tumors can result in up to a 35% incidence of late pulmonary toxicity. We evaluated an automated scoring method to quantify post-SABR bronchial changes by using artificia...

Developing a prognostic model using machine learning for disulfidptosis related lncRNA in lung adenocarcinoma.

Scientific reports
Disulfidptosis represents a novel cell death mechanism triggered by disulfide stress, with potential implications for advancements in cancer treatments. Although emerging evidence highlights the critical regulatory roles of long non-coding RNAs (lncR...

Predicting Lymphovascular Invasion in Non-small Cell Lung Cancer Using Deep Convolutional Neural Networks on Preoperative Chest CT.

Academic radiology
RATIONALE AND OBJECTIVES: Lymphovascular invasion (LVI) plays a significant role in precise treatments of non-small cell lung cancer (NSCLC). This study aims to build a non-invasive LVI prediction diagnosis model by combining preoperative CT images w...

A miRNA-disease association prediction model based on tree-path global feature extraction and fully connected artificial neural network with multi-head self-attention mechanism.

BMC cancer
BACKGROUND: MicroRNAs (miRNAs) emerge in various organisms, ranging from viruses to humans, and play crucial regulatory roles within cells, participating in a variety of biological processes. In numerous prediction methods for miRNA-disease associati...

Applying machine learning to construct an association model for lung cancer and environmental hormone high-risk factors and nursing assessment reconstruction.

Journal of nursing scholarship : an official publication of Sigma Theta Tau International Honor Society of Nursing
INTRODUCTION: To utilize machine learning techniques to develop an association model linking lung cancer and environmental hormones to enhance the understanding of potential lung cancer risk factors and refine current nursing assessments for lung can...