AIMC Topic: Machine Learning

Clear Filters Showing 871 to 880 of 32557 articles

Methodological conduct and risk of bias in studies on prenatal birthweight prediction models using machine learning techniques: a systematic review.

BMC pregnancy and childbirth
OBJECTIVE: To assess the methodological quality and the risk of bias, of studies that developed prediction models using Machine Learning (ML) techniques to estimate prenatal birthweight.

Prediction of caesarean section birth using machine learning algorithms among pregnant women in a district hospital in Ghana.

BMC pregnancy and childbirth
BACKGROUND: Machine learning algorithms may contribute to improving maternal and child health, including determining the suitability of caesarean section (CS) births in low-resource countries. Despite machine learning algorithms offering a more robus...

Interpretable machine learning for depression recognition with spatiotemporal gait features among older adults: a cross-sectional study in Xiamen, China.

BMC geriatrics
OBJECTIVE: Depression in older adults is a growing public health concern, yet there is still a lack of convenient and real-time methods for depressive symptoms identification. This study aims to develop a gait-based depression recognition method for ...

Identification of MEG3 and MAPK3 as potential therapeutic targets for osteoarthritis through multiomics integration and machine learning.

Scientific reports
Knee osteoarthritis (KOA) is a prevalent degenerative joint disorder, yet its underlying molecular mechanisms remain puzzling. This study aimed to uncover the genes with a causal relationship to KOA using Mendelian randomization (MR), transcriptomic ...

Dynamic mode decomposition for analysis and prediction of metabolic oscillations from time-lapse imaging of cellular autofluorescence.

Scientific reports
Oscillations are a common phenomenon in cell biology. They are based on non-linear coupling of biochemical reactions and can show rich dynamic behavior as found in, for example, glycolysis of yeast cells. Here, we show that dynamic mode decomposition...

False-positive tolerant model misconduct mitigation in distributed federated learning on electronic health record data across clinical institutions.

Scientific reports
As collaborative Machine Learning on cross-institutional, fully distributed networks become an important tool in predictive health modeling, its inherent security risks must be addressed. One among such risks is the lack of a mitigation strategy agai...

Machine learning-based analysis on pharmaceutical compounds interaction with polymer to estimate drug solubility in formulations.

Scientific reports
This study introduces a sophisticated predictive framework for determining drug solubility and activity values in formulations via machine learning. The framework utilizes a comprehensive dataset consisting of more than 12,000 data rows and 24 input ...

Deep molecular profiling of synovial biopsies in the STRAP trial identifies signatures predictive of treatment response to biologic therapies in rheumatoid arthritis.

Nature communications
Approximately 40% of patients with rheumatoid arthritis do not respond to individual biologic therapies, while biomarkers predictive of treatment response are lacking. Here we analyse RNA-sequencing (RNA-Seq) of pre-treatment synovial tissue from the...

Enhancing breast cancer diagnosis through machine learning algorithms.

Scientific reports
Among the most important health concerns in the world, and the number one cause of death in women, is breast cancer. Bearing in mind that there are more than 100 types of cancer, each presenting different symptoms, its early detection is indeed a big...

Predictive modelling of air pollution affecting human tuberculosis risk on Mainland China.

Scientific reports
In this study, we investigated the correlation between air pollution indicators and pulmonary tuberculosis (TB) incidence and mortality rates across provincial administrative regions of China from January 2013 to December 2020 to develop predictive m...