AIMC Topic: Magnetic Resonance Imaging

Clear Filters Showing 531 to 540 of 6484 articles

Deep learning-based Intraoperative MRI reconstruction.

European radiology experimental
BACKGROUND: We retrospectively evaluated the quality of deep learning (DL) reconstructions of on-scanner accelerated intraoperative MRI (iMRI) during respective brain tumor surgery.

RAE-Net: a multi-modal neural network based on feature fusion and evidential deep learning algorithm in predicting breast cancer subtypes on DCE-MRI.

Biomedical physics & engineering express
Accurate identification of molecular subtypes in breast cancer is critical for personalized treatment. This study introduces a novel neural network model, RAE-Net, based on Multimodal Feature Fusion (MFF) and the Evidential Deep Learning Algorithm (E...

Recent topics in musculoskeletal imaging focused on clinical applications of AI: How should radiologists approach and use AI?

La Radiologia medica
The advances in artificial intelligence (AI) technology in recent years have been remarkable, and the field of radiology is at the forefront of applying and implementing these technologies in daily clinical practice. Radiologists must keep up with th...

Deep transfer learning radiomics for distinguishing sinonasal malignancies: a preliminary MRI study.

Future oncology (London, England)
PURPOSE: This study aimed to assess the diagnostic accuracy of combining MRI hand-crafted (HC) radiomics features with deep transfer learning (DTL) in identifying sinonasal squamous cell carcinoma (SCC), adenoid cystic carcinoma (ACC), and non-Hodgki...

Deep learning to quantify the pace of brain aging in relation to neurocognitive changes.

Proceedings of the National Academy of Sciences of the United States of America
Brain age (BA), distinct from chronological age (CA), can be estimated from MRIs to evaluate neuroanatomic aging in cognitively normal (CN) individuals. BA, however, is a cross-sectional measure that summarizes cumulative neuroanatomic aging since bi...

[MP-MRI in the evaluation of non-operative treatment response, for residual and recurrent tumor detection in head and neck cancer].

Magyar onkologia
As non-surgical therapies gain acceptance in head and neck tumors, the importance of imaging has increased. New therapeutic methods (in radiation therapy, targeted biological therapy, immunotherapy) need better tumor characterization and prognostic i...

AI for image quality and patient safety in CT and MRI.

European radiology experimental
Substantial endeavors have been recently dedicated to developing artificial intelligence (AI) solutions, especially deep learning-based, tailored to enhance radiological procedures, in particular algorithms designed to minimize radiation exposure and...

TTGA U-Net: Two-stage two-stream graph attention U-Net for hepatic vessel connectivity enhancement.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Accurate segmentation of hepatic vessels is pivotal for guiding preoperative planning in ablation surgery utilizing CT images. While non-contrast CT images often lack observable vessels, we focus on segmenting hepatic vessels within preoperative MR i...

Regional Cerebral Atrophy Contributes to Personalized Survival Prediction in Amyotrophic Lateral Sclerosis: A Multicentre, Machine Learning, Deformation-Based Morphometry Study.

Annals of neurology
OBJECTIVE: Accurate personalized survival prediction in amyotrophic lateral sclerosis is essential for effective patient care planning. This study investigates whether grey and white matter changes measured by magnetic resonance imaging can improve i...