AIMC Topic: Middle Aged

Clear Filters Showing 61 to 70 of 15447 articles

Multimodal radiomics in glioma: predicting recurrence in the peritumoural brain zone using integrated MRI.

BMC medical imaging
BACKGROUND: Gliomas exhibit a high recurrence rate, particularly in the peritumoural brain zone after surgery. This study aims to develop and validate a radiomics-based model using preoperative fluid-attenuated inversion recovery (FLAIR) and T1-weigh...

Artificial intelligence-assisted identification of condensing osteitis and idiopathic osteosclerosis on panoramic radiographs.

Scientific reports
Idiopathic osteosclerosis (IOS) and condensing osteitis (CO) represent radiopaque lesions often detected incidentally within the jaws, posing substantial diagnostic challenges due to their overlapping radiographic characteristics. The objective of th...

18F-FDG PET/CT-based deep radiomic models for enhancing chemotherapy response prediction in breast cancer.

Medical oncology (Northwood, London, England)
Enhancing the accuracy of tumor response predictions enables the development of tailored therapeutic strategies for patients with breast cancer. In this study, we developed deep radiomic models to enhance the prediction of chemotherapy response after...

Multimodal anti fraud education improves cognitive emotional and behavioral engagement in older adults.

Scientific reports
This study examines the differential effectiveness of video-based versus text-based anti-fraud educational interventions in improving cognitive comprehension, emotional engagement, and behavioral intentions among older adults. Using a stratified samp...

Construction and validation of a urinary stone composition prediction model based on machine learning.

Urolithiasis
The composition of urinary calculi serves as a critical determinant for personalized surgical strategies; however, such compositional data are often unavailable preoperatively. This study aims to develop a machine learning-based preoperative predicti...

Deep learning and radiomics fusion for predicting the invasiveness of lung adenocarcinoma within ground glass nodules.

Scientific reports
Microinvasive adenocarcinoma (MIA) and invasive adenocarcinoma (IAC) require distinct treatment strategies and are associated with different prognoses, underscoring the importance of accurate differentiation. This study aims to develop a predictive m...

Enhancing meningioma tumor classification accuracy through multi-task learning approach and image analysis of MRI images.

PloS one
BACKGROUND: Accurate classification of meningioma brain tumors is crucial for determining the appropriate treatment plan and improving patient outcomes. However, this task is challenging due to the slow-growing nature of these tumors and the potentia...

Prediction of cervical cancer lymph node metastasis based on multisequence magnetic resonance imaging radiomics and deep learning features: a dual-center study.

Scientific reports
Cervical cancer is a leading cause of death from malignant tumors in women, and accurate evaluation of occult lymph node metastasis (OLNM) is crucial for optimal treatment. This study aimed to develop several predictive models-including Clinical mode...

Development and validation of a machine learning model for predicting vulnerable carotid plaques using routine blood biomarkers and derived indicators: insights into sex-related risk patterns.

Cardiovascular diabetology
BACKGROUND: Early detection of vulnerable carotid plaques is critical for stroke prevention. This study aimed to develop a machine learning model based on routine blood tests and derived indices to predict plaque vulnerability and assess sex-specific...

Multi-omics insights of immune cells in the risk and prognosis of idiopathic membranous nephropathy.

Communications biology
Idiopathic membranous nephropathy (IMN) is the major cause of autoimmune-related nephrotic syndrome. The role immune cells play in the risk and prognosis of IMN remains elusive. We employ multi-omics data and a variety of approaches to evaluate the c...