AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Molecular Docking Simulation

Showing 71 to 80 of 591 articles

Clear Filters

A machine learning-based immune response signature to facilitate prognosis prediction in patients with endometrial cancer.

Scientific reports
Endometrial cancer is the most prevalent form of gynecologic malignancy, with a significant surge in incidence among youngsters. Although the advent of the immunotherapy era has profoundly improved patient outcomes, not all patients benefit from immu...

Evaluations of the Perturbation Resistance of the Deep-Learning-Based Ligand Conformation Optimization Algorithm.

Journal of chemical information and modeling
In recent years, the deep learning (DL) technique has rapidly developed and shown great success in scoring the protein-ligand binding affinities. The protein-ligand conformation optimization based on DL-derived scoring functions holds broad applicati...

Artificial intelligence-enabled discovery of a RIPK3 inhibitor with neuroprotective effects in an acute glaucoma mouse model.

Chinese medical journal
BACKGROUND: Retinal ganglion cell (RGC) death caused by acute ocular hypertension is an important characteristic of acute glaucoma. Receptor-interacting protein kinase 3 (RIPK3) that mediates necroptosis is a potential therapeutic target for RGC deat...

Multi-target neural network model of anxiolytic activity of chemical compounds using correlation convolution of multiple docking energy spectra.

Biomeditsinskaia khimiia
Anxiety disorders are one of the most common mental health pathologies in the world. They require searc h and development of novel effective pharmacologically active substances. Thus, the development of new approaches to the search for anxiolytic sub...

Enhanced prediction of beta-secretase inhibitory compounds with mol2vec technique and machine learning algorithms.

SAR and QSAR in environmental research
A comprehensive computational strategy that combined QSAR modelling, molecular docking, and ADMET analysis was used to discover potential inhibitors for β-secretase 1 (BACE-1). A dataset of 1,138 compounds with established BACE-1 inhibitory activitie...

Residue-Level Multiview Deep Learning for ATP Binding Site Prediction and Applications in Kinase Inhibitors.

Journal of chemical information and modeling
Accurate identification of adenosine triphosphate (ATP) binding sites is crucial for understanding cellular functions and advancing drug discovery, particularly in targeting kinases for cancer treatment. Existing methods face significant challenges d...

ChemNTP: Advanced Prediction of Neurotoxicity Targets for Environmental Chemicals Using a Siamese Neural Network.

Environmental science & technology
Environmental chemicals can enter the human body through various exposure pathways, potentially leading to neurotoxic effects that pose significant health risks. Many such chemicals have been identified as neurotoxic, but the molecular mechanisms und...

Effective analysis of thyroid toxicity and mechanisms of acetyltributyl citrate using network toxicology, molecular docking, and machine learning strategies.

Toxicology
The growing prevalence of environmental pollutants has raised concerns about their potential role in thyroid dysfunction and related disorders. Previous research suggests that various chemicals, including plasticizers like acetyl tributyl citrate (AT...

Natural compounds for Alzheimer's prevention and treatment: Integrating SELFormer-based computational screening with experimental validation.

Computers in biology and medicine
BACKGROUND: This study aimed to develop and apply a novel computational pipeline combining SELFormer, a transformer architecture-based chemical language model, with advanced deep learning techniques to predict natural compounds (NCs) with potential i...

SG-ML-PLAP: A structure-guided machine learning-based scoring function for protein-ligand binding affinity prediction.

Protein science : a publication of the Protein Society
Computational methods to predict binding affinity of protein-ligand complex have been used extensively to design inhibitors for proteins selected as drug targets. In recent years machine learning (ML) is being increasingly used for design of drugs/in...