Purpose To develop and validate a deep multitask network, MultiRecNet, for fully automatic prediction of disease-free survival (DFS) in patients with neoadjuvant chemoradiotherapy (nCRT)-treated locally advanced rectal cancer (LARC). Materials and Me...
BACKGROUND AND OBJECTIVES: Accurate survival prediction for pancreatic ductal adenocarcinoma (PDAC) is crucial for personalized treatment strategies. This study aims to construct a novel pathomics indicator using hematoxylin and eosin-stained whole s...
Clinical cancer research : an official journal of the American Association for Cancer Research
Jan 17, 2025
PURPOSE: Necrosis quantification in the neoadjuvant setting using pathology slide review is the most important validated prognostic marker in conventional osteosarcoma. Herein, we explored three deep-learning strategies on histology samples to predic...
Zhonghua bing li xue za zhi = Chinese journal of pathology
Jan 8, 2025
To investigate the prognostic value of deep learning-based automated quantification of tumor-stroma ratio (TSR) in patients undergoing neoadjuvant therapy (NAT) for breast cancer. Specimens were collected from 209 breast cancer patients who receive...
BACKGROUND: Morphological and vascular characteristics of breast cancer can change during neoadjuvant chemotherapy (NAC). Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)-acquired pre- and mid-treatment quantitatively capture informatio...
OBJECTIVES: To develop and validate machine learning models for human epidermal growth factor receptor 2 (HER2)-zero and HER2-low using MRI features pre-neoadjuvant therapy (NAT).
INTRODUCTION: In this study, we aimed to evaluate the predictive value of circulating lymphocyte subsets and inflammatory indexes in response to neoadjuvant chemoradiotherapy (NCRT) in patients with rectal mucinous adenocarcinomas (MACs).
OBJECTIVES: To evaluate the performance of machine learning models in predicting pathological complete response (pCR) to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer using magnetic resonance imaging.
Tumor molecular data sets are becoming increasingly complex, making it nearly impossible for humans alone to effectively analyze them. Here, we demonstrate the power of using machine learning (ML) to analyze a single-cell, spatial, and highly multipl...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.