AIMC Topic: Neoplasm Grading

Clear Filters Showing 61 to 70 of 375 articles

Accurate low and high grade glioma classification using free water eliminated diffusion tensor metrics and ensemble machine learning.

Scientific reports
Glioma, a predominant type of brain tumor, can be fatal. This necessitates an early diagnosis and effective treatment strategies. Current diagnosis is based on biopsy, prompting the need for non invasive neuroimaging alternatives. Diffusion tensor im...

Metabolic signatures derived from whole-brain MR-spectroscopy identify early tumor progression in high-grade gliomas using machine learning.

Journal of neuro-oncology
PURPOSE: Recurrence for high-grade gliomas is inevitable despite maximal safe resection and adjuvant chemoradiation, and current imaging techniques fall short in predicting future progression. However, we introduce a novel whole-brain magnetic resona...

Sexually dimorphic computational histopathological signatures prognostic of overall survival in high-grade gliomas via deep learning.

Science advances
High-grade glioma (HGG) is an aggressive brain tumor. Sex is an important factor that differentially affects survival outcomes in HGG. We used an end-to-end deep learning approach on hematoxylin and eosin (H&E) scans to (i) identify sex-specific hist...

Utilizing machine learning to tailor radiotherapy and chemoradiotherapy for low-grade glioma patients.

PloS one
BACKGROUND: There is ongoing uncertainty about the effectiveness of various adjuvant treatments for low-grade gliomas (LGGs). Machine learning (ML) models that predict individual treatment effects (ITE) and provide treatment recommendations could hel...

Beyond hand-crafted features for pretherapeutic molecular status identification of pediatric low-grade gliomas.

Scientific reports
The use of targeted agents in the treatment of pediatric low-grade gliomas (pLGGs) relies on the determination of molecular status. It has been shown that genetic alterations in pLGG can be identified non-invasively using MRI-based radiomic features ...

Machine Learning-based Nomograms for Predicting Clinical Stages of Initial Prostate Cancer: A Multicenter Retrospective Study.

Urology
OBJECTIVE: To construct and externally validate machine learning-based nomograms for predicting progression stages of initial prostate cancer (PCa) using biomarkers and clinicopathologic features.

A novel assessment of whole-mount Gleason grading in prostate cancer to identify candidates for radical prostatectomy: a machine learning-based multiomics study.

Theranostics
: This study aims to assess whole-mount Gleason grading (GG) in prostate cancer (PCa) accurately using a multiomics machine learning (ML) model and to compare its performance with biopsy-proven GG (bxGG) assessment. : A total of 146 patients with PCa...

Clinical-Grade Validation of an Autofluorescence Virtual Staining System With Human Experts and a Deep Learning System for Prostate Cancer.

Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
The tissue diagnosis of adenocarcinoma and intraductal carcinoma of the prostate includes Gleason grading of tumor morphology on the hematoxylin and eosin stain and immunohistochemistry markers on the prostatic intraepithelial neoplasia-4 stain (CK5/...

A data-centric machine learning approach to improve prediction of glioma grades using low-imbalance TCGA data.

Scientific reports
Accurate prediction and grading of gliomas play a crucial role in evaluating brain tumor progression, assessing overall prognosis, and treatment planning. In addition to neuroimaging techniques, identifying molecular biomarkers that can guide the dia...