: This study aims to assess whole-mount Gleason grading (GG) in prostate cancer (PCa) accurately using a multiomics machine learning (ML) model and to compare its performance with biopsy-proven GG (bxGG) assessment. : A total of 146 patients with PCa...
BACKGROUND: There is ongoing uncertainty about the effectiveness of various adjuvant treatments for low-grade gliomas (LGGs). Machine learning (ML) models that predict individual treatment effects (ITE) and provide treatment recommendations could hel...
Glioma, a predominant type of brain tumor, can be fatal. This necessitates an early diagnosis and effective treatment strategies. Current diagnosis is based on biopsy, prompting the need for non invasive neuroimaging alternatives. Diffusion tensor im...
PURPOSE: Recurrence for high-grade gliomas is inevitable despite maximal safe resection and adjuvant chemoradiation, and current imaging techniques fall short in predicting future progression. However, we introduce a novel whole-brain magnetic resona...
High-grade glioma (HGG) is an aggressive brain tumor. Sex is an important factor that differentially affects survival outcomes in HGG. We used an end-to-end deep learning approach on hematoxylin and eosin (H&E) scans to (i) identify sex-specific hist...
Studies in health technology and informatics
39176576
Prostate cancer is a dominant health concern calling for advanced diagnostic tools. Utilizing digital pathology and artificial intelligence, this study explores the potential of 11 deep neural network architectures for automated Gleason grading in pr...
Journal of medical imaging and radiation sciences
39255563
INTRODUCTION: The complexity of diffuse gliomas relies on advanced imaging techniques like MRI to understand their heterogeneity. Utilizing the UCSF-PDGM dataset, this study harnesses MRI techniques, radiomics, and AI to analyze diffuse gliomas for o...
Gleason grade group (GG) is the most powerful prognostic variable in localized prostate cancer; however, interobserver variability remains a challenge. Artificial intelligence algorithms applied to histopathologic images standardize grading, but most...
This study utilized data from 140,294 prostate cancer cases from the Surveillance, Epidemiology, and End Results (SEER) database. Here, 10 different machine learning algorithms were applied to develop treatment options for predicting patients with pr...
BACKGROUND: Postoperative recurrence risk for pediatric low-grade gliomas (pLGGs) is challenging to predict by conventional clinical, radiographic, and genomic factors. We investigated if deep learning (DL) of magnetic resonance imaging (MRI) tumor f...