AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Nomograms

Showing 111 to 120 of 336 articles

Clear Filters

Prognostic model for predicting recurrence in hepatocellular carcinoma patients with high systemic immune-inflammation index based on machine learning in a multicenter study.

Frontiers in immunology
INTRODUCTION: This study aims to use machine learning to conduct in-depth analysis of key factors affecting the recurrence of HCC patients with high preoperative systemic immune-inflammation index (SII) levels after receiving ablation treatment, and ...

Use machine learning models to identify and assess risk factors for coronary artery disease.

PloS one
Accurate prediction of coronary artery disease (CAD) is crucial for enabling early clinical diagnosis and tailoring personalized treatment options. This study attempts to construct a machine learning (ML) model for predicting CAD risk and further elu...

Integrated transcriptomic analysis and machine learning for characterizing diagnostic biomarkers and immune cell infiltration in fetal growth restriction.

Frontiers in immunology
BACKGROUND: Fetal growth restriction (FGR) occurs in 10% of pregnancies worldwide. Placenta dysfunction, as one of the most common causes of FGR, is associated with various poor perinatal outcomes. The main objectives of this study were to screen pot...

Comparison of Machine Learning Algorithms and Nomogram Construction for Diabetic Retinopathy Prediction in Type 2 Diabetes Mellitus Patients.

Ophthalmic research
INTRODUCTION: The aim of this study was to compare various machine learning algorithms for constructing a diabetic retinopathy (DR) prediction model among type 2 diabetes mellitus (DM) patients and to develop a nomogram based on the best model.

Hybrid clinical-radiomics model based on fully automatic segmentation for predicting the early expansion of spontaneous intracerebral hemorrhage: A multi-center study.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
BACKGROUND: Early prediction of hematoma expansion (HE) is important for the development of therapeutic strategies for spontaneous intracerebral hemorrhage (sICH). Radiomics can help to predict early hematoma expansion in intracerebral hemorrhage. Ho...

An Integrated Radiopathomics Machine Learning Model to Predict Pathological Response to Preoperative Chemotherapy in Gastric Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: Accurately predicting the pathological response to chemotherapy before treatment is important for selecting the appropriate treatment groups, formulating individualized treatment plans, and improving the survival rates of pa...

Ultrasound-Based Deep Learning Radiomics Nomogram for Tumor and Axillary Lymph Node Status Prediction After Neoadjuvant Chemotherapy.

Academic radiology
RATIONALE AND OBJECTIVES: This study aims to explore the feasibility of the deep learning radiomics nomogram (DLRN) for predicting tumor status and axillary lymph node metastasis (ALNM) after neoadjuvant chemotherapy (NAC) in patients with breast can...

Construction and evaluation of a mortality prediction model for patients with acute kidney injury undergoing continuous renal replacement therapy based on machine learning algorithms.

Annals of medicine
BACKGROUND: To construct and evaluate a predictive model for in-hospital mortality among critically ill patients with acute kidney injury (AKI) undergoing continuous renal replacement therapy (CRRT), based on nine machine learning (ML) algorithm.

Predicting the risk category of thymoma with machine learning-based computed tomography radiomics signatures and their between-imaging phase differences.

Scientific reports
The aim of this study was to develop a medical imaging and comprehensive stacked learning-based method for predicting high- and low-risk thymoma. A total of 126 patients with thymomas and 5 patients with thymic carcinoma treated at our institution, i...

Predictive Study of Machine Learning-Based Multiparametric MRI Radiomics Nomogram for Perineural Invasion in Rectal Cancer: A Pilot Study.

Journal of imaging informatics in medicine
This study aimed to establish and validate the efficacy of a nomogram model, synthesized through the integration of multi-parametric magnetic resonance radiomics and clinical risk factors, for forecasting perineural invasion in rectal cancer. We retr...