OBJECTIVE: Artificial neural network (ANN) technology has been developed for clinical use to analyze bone scintigraphy with metastatic bone tumors. It has been reported to improve diagnostic accuracy and reproducibility especially in cases of prostat...
OBJECTIVE: Using CT texture analysis and machine learning methods, this study aims to distinguish the lesions imaged via 68Ga-prostate-specific membrane antigen (PSMA) positron emission tomography (PET)/CT as metastatic and completely responded in pa...
European journal of nuclear medicine and molecular imaging
Jun 29, 2019
INTRODUCTION: Recently there have been significant advances in the field of machine learning and artificial intelligence (AI) centered around imaging-based applications such as computer vision. In particular, the tremendous power of deep learning alg...
AIM: To assess the ability of artificial neural networks (ANNs) to predict the likelihood of malignancy of pure ground-glass opacities (GGOs), using observations from computed tomography (CT) and 2-[F]-fluoro-2-deoxy-d-glucose (FDG) positron-emission...
BACKGROUND: We designed a deep learning model for assessing F-FDG PET/CT for early prediction of local and distant failures for patients with locally advanced cervical cancer.
Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
May 3, 2019
Biological tumour volume (GTV) delineation on F-FDG PET acquired during induction chemotherapy (ICT) is challenging due to the reduced metabolic uptake and volume of the GTV. Automatic segmentation algorithms applied to F-FDG PET (PET-AS) imaging hav...
Clinical cancer research : an official journal of the American Association for Cancer Research
Apr 11, 2019
PURPOSE: We aimed to evaluate the value of deep learning on positron emission tomography with computed tomography (PET/CT)-based radiomics for individual induction chemotherapy (IC) in advanced nasopharyngeal carcinoma (NPC).
Early detection and localization of prostate tumors pose a challenge to the medical community. Several imaging techniques, including PET, have shown some success. But no robust and accurate solution has yet been reached. This work aims to detect pros...
Lymph node metastasis (LNM) is a significant prognostic factor in patients with head and neck cancer, and the ability to predict it accurately is essential to optimizing treatment. Positron emission tomography (PET) and computed tomography (CT) imagi...
PURPOSE: To investigate the use and efficiency of 3-D deep learning, fully convolutional networks (DFCN) for simultaneous tumor cosegmentation on dual-modality nonsmall cell lung cancer (NSCLC) and positron emission tomography (PET)-computed tomograp...