AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Predictive Value of Tests

Showing 291 to 300 of 2091 articles

Clear Filters

Predicting Mortality in Sepsis-Associated Acute Respiratory Distress Syndrome: A Machine Learning Approach Using the MIMIC-III Database.

Journal of intensive care medicine
BackgroundTo develop and validate a mortality prediction model for patients with sepsis-associated Acute Respiratory Distress Syndrome (ARDS).MethodsThis retrospective cohort study included 2466 patients diagnosed with sepsis and ARDS within 24 h of ...

Long-term Major Adverse Cardiac Event Prediction by Computed Tomography-derived Plaque Measures and Clinical Parameters Using Machine Learning.

Internal medicine (Tokyo, Japan)
Objective The present study evaluated the usefulness of machine learning (ML) models with the coronary computed tomography imaging and clinical parameters for predicting major adverse cardiac events (MACEs). Methods The Nationwide Gender-specific Ath...

Classifying High-Risk Patients for Persistent Opioid Use After Major Spine Surgery: A Machine-Learning Approach.

Anesthesia and analgesia
BACKGROUND: Persistent opioid use is a common occurrence after surgery and prolonged exposure to opioids may result in escalation and dependence. The objective of this study was to develop machine-learning-based predictive models for persistent opioi...

Volume Measurements for Surveillance after Endovascular Aneurysm Repair using Artificial Intelligence.

European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery
OBJECTIVE: Surveillance after endovascular aneurysm repair (EVAR) is suboptimal due to limited compliance and relatively large variability in measurement methods of abdominal aortic aneurysm (AAA) sac size after treatment. Measuring volume offers a m...

Artificial Intelligence-Enhanced Risk Stratification of Cancer Therapeutics-Related Cardiac Dysfunction Using Electrocardiographic Images.

Circulation. Cardiovascular quality and outcomes
BACKGROUND: Risk stratification strategies for cancer therapeutics-related cardiac dysfunction (CTRCD) rely on serial monitoring by specialized imaging, limiting their scalability. We aimed to examine an application of artificial intelligence (AI) to...

An unsupervised learning model based on CT radiomics features accurately predicts axillary lymph node metastasis in breast cancer patients: diagnostic study.

International journal of surgery (London, England)
BACKGROUND: The accuracy of traditional clinical methods for assessing the metastatic status of axillary lymph nodes (ALNs) is unsatisfactory. In this study, the authors propose the use of radiomic technology and three-dimensional (3D) visualization ...

Hybrid clinical-radiomics model based on fully automatic segmentation for predicting the early expansion of spontaneous intracerebral hemorrhage: A multi-center study.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
BACKGROUND: Early prediction of hematoma expansion (HE) is important for the development of therapeutic strategies for spontaneous intracerebral hemorrhage (sICH). Radiomics can help to predict early hematoma expansion in intracerebral hemorrhage. Ho...

The early prediction of gestational diabetes mellitus by machine learning models.

BMC pregnancy and childbirth
BACKGROUND: We aimed to determine the best-performing machine learning (ML)-based algorithm for predicting gestational diabetes mellitus (GDM) with sociodemographic and obstetrics features in the pre-conceptional period.

Refining heart disease prediction accuracy using hybrid machine learning techniques with novel metaheuristic algorithms.

International journal of cardiology
Early diagnosis of heart disease is crucial, as it's one of the leading causes of death globally. Machine learning algorithms can be a powerful tool in achieving this goal. Therefore, this article aims to increase the accuracy of predicting heart dis...