AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Predictive Value of Tests

Showing 31 to 40 of 2089 articles

Clear Filters

Machine learning-based prediction of hearing loss: Findings of the US NHANES from 2003 to 2018.

Hearing research
The prevalence of hearing loss (HL) has emerged as an escalating public health concern globally. The objective of this study was to leverage data from the National Health and Nutritional Examination Survey (NHANES) to develop an interpretable predict...

Systemic coagulation-inflammation index in the prediction of ISR in patients undergoing drug-eluting stents implant: A retrospective study based on multiple machine learning methods.

International journal of cardiology
BACKGROUND: The Systemic Coagulation-Inflammation index (SCI) is an innovative hematological metric that accurately reflects both coagulopathic and inflammatory dynamics. In this paper, the objective of this paper is to explain the prognostic impact ...

Integrating deep learning with ECG, heart rate variability and demographic data for improved detection of atrial fibrillation.

Open heart
BACKGROUND: Atrial fibrillation (AF) is a common but often undiagnosed condition, increasing the risk of stroke and heart failure. Early detection is crucial, yet traditional methods struggle with AF's transient nature. This study investigates how au...

Machine Learning Models predicting Decompensation in Cirrhosis.

Journal of gastrointestinal and liver diseases : JGLD
BACKGROUND AND AIMS: Decompensation of cirrhosis significantly decreases survival, thus, prevention of complications is paramount. We used machine learning techniques to identify parameters predicting decompensation.

Construction and validation of a predictive model for intracardiac thrombus risk in patients with dilated cardiomyopathy: a retrospective study.

BMC cardiovascular disorders
BACKGROUND: Systemic embolic events due to exfoliation of intracardiac thrombus (ICT) are one of the catastrophic complications of dilated cardiomyopathy (DCM). This study intended to develop a prediction model to predict the risk of ICT in patients ...

Evaluation of machine learning methods for prediction of heart failure mortality and readmission: meta-analysis.

BMC cardiovascular disorders
BACKGROUND: Heart failure (HF) impacts nearly 6 million individuals in the U.S., with a projected 46% increase by 2030, is creating significant healthcare burdens. Predictive models, particularly machine learning (ML)-based models, offer promising so...

ECG-based heart arrhythmia classification using feature engineering and a hybrid stacked machine learning.

BMC cardiovascular disorders
A heart arrhythmia refers to a set of conditions characterized by irregular heart- beats, with an increasing mortality rate in recent years. Regular monitoring is essential for effective management, as early detection and timely treatment greatly imp...

Improved prediction and risk stratification of major adverse cardiovascular events using an explainable machine learning approach combining plasma biomarkers and traditional risk factors.

Cardiovascular diabetology
BACKGROUND: Cardiovascular diseases (CVD) remain the leading cause of morbidity and mortality globally. Traditional risk models, primarily based on established risk factors, often lack the precision needed to accurately predict new-onset major advers...

Advanced imaging techniques and artificial intelligence in pleural diseases: a narrative review.

European respiratory review : an official journal of the European Respiratory Society
BACKGROUND: Pleural diseases represent a significant healthcare burden, affecting over 350 000 patients annually in the US alone and requiring accurate diagnostic approaches for optimal management. Traditional imaging techniques have limitations in d...

Artificial intelligence-enhanced interpretation of kidney transplant biopsy: focus on rejection.

Current opinion in organ transplantation
PURPOSE OF REVIEW: The objective of this review is to provide an update on the application of artificial intelligence (AI) for the histological interpretation of kidney transplant biopsies.