AIMC Topic: Protein Kinase Inhibitors

Clear Filters Showing 21 to 30 of 135 articles

Using prognostic signatures and machine learning to identify core features associated with response to CDK4/6 inhibitor-based therapy in metastatic breast cancer.

Oncogene
CDK4/6 inhibitors in combination with endocrine therapy are widely used to treat HR+/HER2- metastatic breast cancer leading to improved progression-free survival (PFS) compared to single agent endocrine therapy. Over 300 patients receiving standard-o...

A deep-learning model for predicting tyrosine kinase inhibitor response from histology in gastrointestinal stromal tumor.

The Journal of pathology
Over 90% of gastrointestinal stromal tumors (GISTs) harbor mutations in KIT or PDGFRA that can predict response to tyrosine kinase inhibitor (TKI) therapies, as recommended by NCCN (National Comprehensive Cancer Network) guidelines. However, gene seq...

Integrating machine learning and structure-based approaches for repurposing potent tyrosine protein kinase Src inhibitors to treat inflammatory disorders.

Scientific reports
Tyrosine-protein kinase Src plays a key role in cell proliferation and growth under favorable conditions, but its overexpression and genetic mutations can lead to the progression of various inflammatory diseases. Due to the specificity and selectivit...

Residue-Level Multiview Deep Learning for ATP Binding Site Prediction and Applications in Kinase Inhibitors.

Journal of chemical information and modeling
Accurate identification of adenosine triphosphate (ATP) binding sites is crucial for understanding cellular functions and advancing drug discovery, particularly in targeting kinases for cancer treatment. Existing methods face significant challenges d...

Docking-Informed Machine Learning for Kinome-wide Affinity Prediction.

Journal of chemical information and modeling
Kinase inhibitors are an important class of anticancer drugs, with 80 inhibitors clinically approved and >100 in active clinical testing. Most bind competitively in the ATP-binding site, leading to challenges with selectivity for a specific kinase, r...

Machine learning-aided discovery of T790M-mutant EGFR inhibitor CDDO-Me effectively suppresses non-small cell lung cancer growth.

Cell communication and signaling : CCS
BACKGROUND: Epidermal growth factor receptor (EGFR) T790M mutation often occurs during long durational erlotinib treatment of non-small cell lung cancer (NSCLC) patients, leading to drug resistance and disease progression. Identification of new selec...

Using bioinformatics and artificial intelligence to map the cyclin-dependent kinase 4/6 inhibitor biomarker landscape in breast cancer.

Future oncology (London, England)
A cyclin-dependent kinase 4/6 (CDK4/6) inhibitor combined with endocrine therapy is the standard-of-care for patients with hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer. However, not all patients r...

Wee1 inhibitor optimization through deep-learning-driven decision making.

European journal of medicinal chemistry
Deep learning has gained increasing attention in recent years, yielding promising results in hit screening and molecular optimization. Herein, we employed an efficient strategy based on multiple deep learning techniques to optimize Wee1 inhibitors, w...

The Development and Application of KinomePro-DL: A Deep Learning Based Online Small Molecule Kinome Selectivity Profiling Prediction Platform.

Journal of chemical information and modeling
Characterizing the kinome selectivity profiles of kinase inhibitors is essential in the early stages of novel small-molecule drug discovery. This characterization is critical for interpreting potential adverse events caused by off-target polypharmaco...