AIMC Topic: Pseudomonas aeruginosa

Clear Filters Showing 1 to 10 of 56 articles

Antimicrobial Peptides Design Using Deep Learning and Rational Modifications: Activity in Bacteria, Candida albicans, and Cancer Cells.

Current microbiology
Resistance to antimicrobial agents has become a global threat, estimated to cause 10-million deaths annually by 2050. Antimicrobial peptides are emerging as an alternative and offer advantages over traditional antibiotics. Antimicrobial peptides gene...

Combinatorial discovery of microtopographical landscapes that resist biofilm formation through quorum sensing mediated autolubrication.

Nature communications
Bio-instructive materials that intrinsically inhibit biofilm formation have significant anti-biofouling potential in industrial and healthcare settings. Since bacterial surface attachment is sensitive to surface topography, we experimentally surveyed...

Predicting carbapenem-resistant Pseudomonas aeruginosa infection risk using XGBoost model and explainability.

Scientific reports
The prevalence and spread of carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a global public health problem. This study aims to identify the risk factors of CRPA infection and construct a machine learning model to provide a prediction tool for ...

Performance and hypothetical clinical impact of an mNGS-based machine learning model for antimicrobial susceptibility prediction of five ESKAPEE bacteria.

Microbiology spectrum
UNLABELLED: Antimicrobial resistance is an escalating global health crisis, underscoring the urgent need for timely and targeted therapies to ensure effective clinical treatment. We developed a machine learning model based on metagenomic next-generat...

Measuring water pollution effects on antimicrobial resistance through explainable artificial intelligence.

Environmental pollution (Barking, Essex : 1987)
Antimicrobial resistance refers to the ability of pathogens to develop resistance to drugs designed to eliminate them, making the infections they cause more difficult to treat and increasing the likelihood of disease diffusion and mortality. As such,...

High-content imaging and deep learning-driven detection of infectious bacteria in wounds.

Bioprocess and biosystems engineering
Fast and accurate detection of infectious bacteria in wounds is crucial for effective clinical treatment. However, traditional methods take over 24 h to yield results, which is inadequate for urgent clinical needs. Here, we introduce a deep learning-...

Identification of Staphylococcus aureus, Enterococcus faecium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii from Raman spectra by Artificial Intelligent Raman Detection and Identification System (AIRDIS) with machine learning.

Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi
BACKGROUND: Rapid and accurate identification of bacteria is required in order to develop effective treatment strategies. Traditional culture-based methods are time-consuming, while MALDI-TOF MS is expensive. The Raman spectroscopy, due to its relati...

Antimicrobial efficacy of an experimental UV-C robot in controlled conditions and in a real hospital scenario.

The Journal of hospital infection
BACKGROUND: Among no-touch automated disinfection devices, ultraviolet-C (UV-C) radiation has been proven to be one of the most effective against a broad spectrum of micro-organisms causing healthcare-associated infections.