PURPOSE: Accurate differentiation of benign renal lesions from renal cell carcinoma (RCC) is crucial for optimized management, particularly for small renal lesions (≤4 cm in diameter). This study aimed to integrate clinical data, radiomic features, a...
BACKGROUND: Gastric cancer patients are prone to lower extremity deep vein thrombosis (DVT) after surgery, which is an important cause of death in postoperative patients. Therefore, it is particularly important to find a suitable way to predict the r...
Journal of magnetic resonance imaging : JMRI
Feb 6, 2025
BACKGROUND: Sacroiliitis is a hallmark of ankylosing spondylitis (AS), and early detection plays an important role in managing the condition effectively. MRI is commonly used for diagnosing sacroiliitis, traditional methods often depend on subjective...
BACKGROUND: Vertebral compression fractures (VCFs) are prevalent in the elderly, often caused by osteoporosis or trauma. Differentiating acute from chronic VCFs is vital for treatment planning, but MRI, the gold standard, is inaccessible for some. Ho...
Biomedical physics & engineering express
Feb 6, 2025
. Although radiotherapy techniques are a primary treatment for head and neck cancer (HNC), they are still associated with substantial toxicity and side effects. Machine learning (ML) based radiomics models for predicting toxicity mostly rely on featu...
PURPOSE: Preeclampsia (PE) is associated with placental insufficiency and could lead to adverse pregnancy outcomes. The study aimed to develop a placental T2-weighted image-based automatic quantitative model for the identification of PE pregnancies a...
BACKGROUND: Long-term severe cholangitis can lead to dense adhesions and increased fragility of the bile duct, complicating surgical procedures and elevating operative risk in children with pancreaticobiliary maljunction (PBM). Consequently, preopera...
PURPOSE: To investigate the feasibility of characterizing tumor heterogeneity in breast cancer ultrasound images using habitat analysis technology and establish a radiomics machine learning model for predicting response to neoadjuvant chemotherapy (N...
RATIONALE AND OBJECTIVES: To develop and validate a machine learning-based prediction model for the use of multiparametric magnetic resonance imaging(MRI) to predict benign and malignant lesions in the testis.
RATIONALE AND OBJECTIVES: This research aimed to develop a combined model based on proximal femur attenuation values and radiomics features at routine CT to predict hip fragility fracture using machine learning methods.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.