AIMC Topic: Radiomics

Clear Filters Showing 401 to 410 of 622 articles

Union is strength: the combination of radiomics features and 3D-deep learning in a sole model increases diagnostic accuracy in demented patients: a whole brain 18FDG PET-CT analysis.

Nuclear medicine communications
OBJECTIVE: FDG PET imaging plays a crucial role in the evaluation of demented patients by assessing regional cerebral glucose metabolism. In recent years, both radiomics and deep learning techniques have emerged as powerful tools for extracting valua...

Radiomics-based detection of acute myocardial infarction on noncontrast enhanced midventricular short-axis cine CMR images.

The international journal of cardiovascular imaging
Cardiac magnetic resonance cine images are primarily used to evaluate functional consequences, whereas limited information is extracted from the noncontrast pixel-wise myocardial signal intensity pattern. In this study we want to assess whether chara...

The value of CT radiomics combined with deep transfer learning in predicting the nature of gallbladder polypoid lesions.

Acta radiologica (Stockholm, Sweden : 1987)
BACKGROUND: Computed tomography (CT) radiomics combined with deep transfer learning was used to identify cholesterol and adenomatous gallbladder polyps that have not been well evaluated before surgery.

Deep learning radiomics-based prediction model of metachronous distant metastasis following curative resection for retroperitoneal leiomyosarcoma: a bicentric study.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Combining conventional radiomics models with deep learning features can result in superior performance in predicting the prognosis of patients with tumors; however, this approach has never been evaluated for the prediction of metachronous...

Lymph node metastasis prediction and biological pathway associations underlying DCE-MRI deep learning radiomics in invasive breast cancer.

BMC medical imaging
BACKGROUND: The relationship between the biological pathways related to deep learning radiomics (DLR) and lymph node metastasis (LNM) of breast cancer is still poorly understood. This study explored the value of DLR based on dynamic contrast-enhanced...

Deep learning-based radiomics of computed tomography angiography to predict adverse events after initial endovascular repair for acute uncomplicated Stanford type B aortic dissection.

European journal of radiology
PURPOSE: This study aimed to construct a predictive model integrating deep learning-derived radiomic features from computed tomography angiography (CTA) and clinical biomarkers to forecast postoperative adverse events (AEs) in patients with acute unc...

Ultrasound-based deep learning radiomics model for differentiating benign, borderline, and malignant ovarian tumours: a multi-class classification exploratory study.

BMC medical imaging
BACKGROUND: Accurate preoperative identification of ovarian tumour subtypes is imperative for patients as it enables physicians to custom-tailor precise and individualized management strategies. So, we have developed an ultrasound (US)-based multicla...

Diagnostic Performance of Radiomics and Deep Learning to Identify Benign and Malignant Soft Tissue Tumors: A Systematic Review and Meta-analysis.

Academic radiology
RATIONALE AND OBJECTIVES: To systematically evaluate the application value of radiomics and deep learning (DL) in the differential diagnosis of benign and malignant soft tissue tumors (STTs).

Exploring tumor heterogeneity in colorectal liver metastases by imaging: Unsupervised machine learning of preoperative CT radiomics features for prognostic stratification.

European journal of radiology
OBJECTIVES: This study aimed to investigate tumor heterogeneity of colorectal liver metastases (CRLM) and stratify the patients into different risk groups of prognoses following liver resection by applying an unsupervised radiomics machine-learning a...

Posterior circulation ischemic stroke: radiomics-based machine learning approach to identify onset time from magnetic resonance imaging.

Neuroradiology
PURPOSE: Posterior circulation ischemic stroke (PCIS) possesses unique features. However, previous studies have primarily or exclusively relied on anterior circulation stroke cases to build machine learning (ML) models for predicting onset time. To d...