AIMC Topic: Radiotherapy, Intensity-Modulated

Clear Filters Showing 21 to 30 of 288 articles

Deep learning-based synthetic CT for dosimetric monitoring of combined conventional radiotherapy and lattice boost in large lung tumors.

Radiation oncology (London, England)
PURPOSE: Conventional radiotherapy (CRT) has limited local control and poses a high risk of severe toxicity in large lung tumors. This study aimed to develop an integrated treatment plan that combines CRT with lattice boost radiotherapy (LRT) and mon...

Evaluation of AI-based auto-contouring tools in radiotherapy: A single-institution study.

Journal of applied clinical medical physics
BACKGROUND: Accurate delineation of organs at risk (OARs) is crucial yet time-consuming in the radiotherapy treatment planning workflow. Modern artificial intelligence (AI) technologies had made automation of OAR contouring feasible. This report deta...

A qualitative, quantitative and dosimetric evaluation of a machine learning-based automatic segmentation method in treatment planning for gastric cancer.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: To investigate the performance of a machine learning-based segmentation method for treatment planning of gastric cancer.

A unified deep-learning framework for enhanced patient-specific quality assurance of intensity-modulated radiation therapy plans.

Medical physics
BACKGROUND: Modern radiation therapy techniques, such as intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT), use complex fluence modulation strategies to achieve optimal patient dose distribution. Ensuring their ...

Automated treatment planning with deep reinforcement learning for head-and-neck (HN) cancer intensity modulated radiation therapy (IMRT).

Physics in medicine and biology
To develop a deep reinforcement learning (DRL) agent to self-interact with the treatment planning system to automatically generate intensity modulated radiation therapy (IMRT) treatment plans for head-and-neck (HN) cancer with consistent organ-at-ris...

Machine learning based radiomics model to predict radiotherapy induced cardiotoxicity in breast cancer.

Journal of applied clinical medical physics
PURPOSE: Cardiotoxicity is one of the major concerns in breast cancer treatment, significantly affecting patient outcomes. To improve the likelihood of favorable outcomes for breast cancer survivors, it is essential to carefully balance the potential...

Can knowledge-based planning models validated on ethnically diverse patients lead to global standardisation of external beam radiation therapy for locally advanced cervix cancer?

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: Knowledge-based planning (KBP) can consistently and efficiently create high-quality Volumetric Arc Therapy (VMAT) plans for cervix cancer. This study describes the cross-validation of two KBP models on geographically distinct ...

Validating knowledge-based volumetric modulated arc therapy plans with a multi-institution model (broad model) using a complete open-loop dataset for prostate cancer.

Physical and engineering sciences in medicine
This study examined the characteristics of the broad model (KBP) through a complete open-loop evaluation of volumetric modulated arc therapy (VMAT) plans for prostate cancer in 30 patients at two institutions. KBP, trained using 561 prostate cancer V...

Deep learning dose prediction to approach Erasmus-iCycle dosimetric plan quality within seconds for instantaneous treatment planning.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: Fast, high-quality deep learning (DL) prediction of patient-specific 3D dose distributions can enable instantaneous treatment planning (IP), in which the treating physician can evaluate the dose and approve the plan immediatel...

Estimation of heart dose in left breast cancer radiotherapy: Assessment of vDIBH feasibility using the supervised machine learning algorithm.

Journal of applied clinical medical physics
BACKGROUND AND OBJECTIVE: The volunteer deep inspiration breath hold (vDIBH) technique is used to reduce the heart dose in left breast cancer radiotherapy. Many times, it is faced that despite rigorous exercise and training, not all patients get bene...