PURPOSE: To evaluate the clinical usefulness of a quantitative deep learning-derived vascular severity score for retinopathy of prematurity (ROP) by assessing its correlation with clinical ROP diagnosis and by measuring clinician agreement in applyin...
Retinal blood vessels provide information on the risk of cardiovascular disease (CVD). Here, we report the development and validation of deep-learning models for the automated measurement of retinal-vessel calibre in retinal photographs, using divers...
Computer methods and programs in biomedicine
Sep 28, 2020
BACKGROUND AND OBJECTIVE: Deep learning techniques are instrumental in developing network models that aid in the early diagnosis of life-threatening diseases. To screen and diagnose the retinal fundus and coronary blood vessel disorders, the most imp...
Fundus photography has been widely used for inspecting eye disorders by ophthalmologists or computer algorithms. Biomarkers related to retinal vessels plays an essential role to detect early diabetes. To quantify vascular biomarkers or the correspond...
Many diseases of the eye are associated with alterations in the retinal vasculature that are possibly preceded by undetected changes in blood flow. In this work, a robust blood flow quantification framework is presented based on optical coherence tom...
Current methods of evaluating the degree of diabetic retinopathy are highly subjective and have no quantitative standard. To objectively evaluate the slight changes in tissue structure during the early stage of retinal diseases, a subjective interpre...
Computer methods and programs in biomedicine
May 31, 2020
BACKGROUND AND OBJECTIVES: Retinal vessel segmentation (RVS) helps in diagnosing diseases such as hypertension, cardiovascular diseases, and others. Convolutional neural networks are widely used in RVS tasks. However, how to comprehensively evaluate ...
PURPOSE: To evaluate the role of ensemble learning techniques with deep learning in classifying diabetic retinopathy (DR) in optical coherence tomography angiography (OCTA) images and their corresponding co-registered structural images.
Translational vision science & technology
Mar 24, 2020
PURPOSE: In cases of optic disc swelling, segmentation of projected retinal blood vessels from optical coherence tomography (OCT) volumes is challenging due to swelling-based shadowing artifacts. Based on our hypothesis that simultaneously considerin...
This paper proposes a new supervised method for blood vessel segmentation using Zernike moment-based shape descriptors. The method implements a pixel wise classification by computing a 11-D feature vector comprising of both statistical (gray-level) f...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.