This study developed a 5-year survival prediction model for gastric cancer patients by combining radiomics and deep learning, focusing on CT-based 2D and 3D features of the iliopsoas and erector spinae muscles. Retrospective data from 705 patients ac...
Scientists aim to create a system that can predict the likelihood of newborns being admitted to the neonatal intensive care unit (NICU) by combining various statistical methods. This prediction could potentially reduce the negative health outcomes, d...
This study compares survival predictions made by an artificial intelligence (AI) based chatbot with real-world data in hepatocellular carcinoma (HCC) patients. It aims to evaluate the reliability and accuracy of AI technologies in HCC prognosis. A re...
The preferred treatment for acute ischaemic stroke (AIS) is intravenous thrombolysis (IVT) administered within 4.5 hours (h) of symptom onset. This study aimed to identify metabolomic biomarkers for distinguishing AIS patients within 4.5 h of symptom...
This study aimed to develop a machine learning model based on Magnetic Resonance Imaging (MRI) radiomics for predicting early recurrence after curative surgery in patients with hepatocellular carcinoma (HCC).A retrospective analysis was conducted on ...
A machine learning model was developed and validated to predict postoperative complications in patients with acute type A aortic dissection (ATAAD) who underwent total arch replacement combined with frozen elephant trunk (TAR + FET), with the goal of...
Postoperative cognitive dysfunction (POCD), a heterogeneous spectrum of surgery/anesthesia-associated neurocognitive impairments, represents a critical clinical challenge due to its associations with prolonged hospitalization, increased mortality, an...
This study aimed to identify the risk factors associated with spontaneous rupture and bleeding in hepatocellular carcinoma, establish a prediction model for spontaneous rupture bleeding via a machine learning algorithm, and validate and evaluate the ...
To develop and validate a machine learning-based prediction model to predict axillary lymph node (ALN) metastasis in triple negative breast cancer (TNBC) patients using magnetic resonance imaging (MRI) and clinical characteristics. This retrospective...
This study aimed to develop and validate convolutional neural network (CNN) models for distinguishing follicular thyroid carcinoma (FTC) from follicular thyroid adenoma (FTA). Additionally, this current study compared the performance of CNN models wi...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.