AIMC Topic: Retrospective Studies

Clear Filters Showing 761 to 770 of 9539 articles

Clinical value of aortic arch morphology in transfemoral TAVR: artificial intelligence evaluation.

International journal of surgery (London, England)
BACKGROUND: The impact of aortic arch (AA) morphology on the management of the procedural details and the clinical outcomes of the transfemoral artery (TF)-transcatheter aortic valve replacement (TAVR) has not been evaluated. The goal of this study w...

AI-powered prostate cancer detection: a multi-centre, multi-scanner validation study.

European radiology
OBJECTIVES: Multi-centre, multi-vendor validation of artificial intelligence (AI) software to detect clinically significant prostate cancer (PCa) using multiparametric magnetic resonance imaging (MRI) is lacking. We compared a new AI solution, valida...

Preoperative diagnosis of meningioma sinus invasion based on MRI radiomics and deep learning: a multicenter study.

Cancer imaging : the official publication of the International Cancer Imaging Society
OBJECTIVE: Exploring the construction of a fusion model that combines radiomics and deep learning (DL) features is of great significance for the precise preoperative diagnosis of meningioma sinus invasion.

Effects of robot-assisted gait training within 1 week after stroke onset on degree of gait independence in individuals with hemiparesis: a propensity score-matched analysis in a single-center cohort study.

Journal of neuroengineering and rehabilitation
BACKGROUND: Robot-assisted gait training (RAGT) is an effective method for treating gait disorders in individuals with stroke. However, no previous studies have demonstrated the effectiveness of RAGT in individuals with acute stroke. This study aimed...

Predicting outcomes of expectant and medical management in early pregnancy miscarriage using machine learning to develop and validate multivariable clinical prediction models.

BMC pregnancy and childbirth
OBJECTIVE: To determine whether readily available patient, ultrasound and treatment outcome data can be used to develop, validate and externally test two machine learning (ML) models for predicting the success of expectant and medical management of m...

Biomarker and clinical data-based predictor tool (MAUXI) for ultrafiltration failure and cardiovascular outcome in peritoneal dialysis patients: a retrospective and longitudinal study.

BMJ health & care informatics
OBJECTIVES: To develop a machine learning-based software as a medical device to predict the endurance and outcomes of peritoneal dialysis (PD) patients in real time using effluent-measured biomarkers of the mesothelial-to-mesenchymal transition (MMT)...

Development of an artificial intelligence-based multimodal diagnostic system for early detection of biliary atresia.

BMC medicine
BACKGROUND: Early diagnosis of biliary atresia (BA) is crucial for improving patient outcomes, yet remains a significant global challenge. This challenge may be ameliorated through the application of artificial intelligence (AI). Despite the promise ...

Prediction of contrast-associated acute kidney injury with machine-learning in patients undergoing contrast-enhanced computed tomography in emergency department.

Scientific reports
Radiocontrast media is a major cause of nephrotoxic acute kidney injury(AKI). Contrast-enhanced CT(CE-CT) is commonly performed in emergency departments(ED). Predicting individualized risks of contrast-associated AKI(CA-AKI) in ED patients is challen...