AI Medical Compendium Topic:
Risk Assessment

Clear Filters Showing 631 to 640 of 2327 articles

From bytes to nephrons: AI's journey in diabetic kidney disease.

Journal of nephrology
Diabetic kidney disease (DKD) is a significant complication of type 2 diabetes, posing a global health risk. Detecting and predicting diabetic kidney disease at an early stage is crucial for timely interventions and improved patient outcomes. Artific...

Identifying momentary suicidal ideation using machine learning in patients at high-risk for suicide.

Journal of affective disorders
BACKGROUND: Strategies to detect the presence of suicidal ideation (SI) or characteristics of ideation that indicate marked suicide risk are critically needed to guide interventions and improve care during care transition periods. Some studies indica...

Assessment of EMR ML Mining Methods for Measuring Association between Metal Mixture and Mortality for Hypertension.

High blood pressure & cardiovascular prevention : the official journal of the Italian Society of Hypertension
INTRODUCTION: There are limited data available regarding the connection between heavy metal exposure and mortality among hypertension patients.

Incremental Value of Multidomain Risk Factors for Dementia Prediction: A Machine Learning Approach.

The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry
OBJECTIVE: The current evidence regarding how different predictor domains contributes to predicting incident dementia remains unclear. This study aims to assess the incremental value of five predictor domains when added to a simple dementia risk pred...

Leveraging feature selection for enhanced fall risk prediction in elderly using gait analysis.

Medical & biological engineering & computing
There is no effective fall risk screening tool for the elderly that can be integrated into clinical practice. Developing a system that can be easily used in primary care services is a current need. Current studies focus on the use of multiple sensors...

Identifying heavy metal sources and health risks in soil-vegetable systems of fragmented vegetable fields based on machine learning, positive matrix factorization model and Monte Carlo simulation.

Journal of hazardous materials
Urban fragmented vegetable fields offer fresh produce but pose a potential risk of heavy metal (HM) exposure. Thus, this study investigated HM sources and health risks in the soil-vegetable systems of Chongqing's central urban area. Results indicated...

Application of machine learning to predict in-hospital mortality after transcatheter mitral valve repair.

Surgery
INTRODUCTION: Transcatheter mitral valve repair offers a minimally invasive treatment option for patients at high risk for traditional open repair. We sought to develop dynamic machine-learning risk prediction models for in-hospital mortality after t...

A risk prediction model based on machine learning algorithm for parastomal hernia after permanent colostomy.

BMC medical informatics and decision making
OBJECTIVE: To develop a machine learning-based risk prediction model for postoperative parastomal hernia (PSH) in colorectal cancer patients undergoing permanent colostomy, assisting nurses in identifying high-risk groups and devising preventive care...

Development and validation of prediction models for nosocomial infection and prognosis in hospitalized patients with cirrhosis.

Antimicrobial resistance and infection control
BACKGROUND: Nosocomial infections (NIs) frequently occur and adversely impact prognosis for hospitalized patients with cirrhosis. This study aims to develop and validate two machine learning models for NIs and in-hospital mortality risk prediction.