AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

ROC Curve

Showing 221 to 230 of 3115 articles

Clear Filters

Identification of critical biomarkers and immune infiltration in preeclampsia through bioinformatics and machine learning methods.

BMC pregnancy and childbirth
BACKGROUND: Preeclampsia (PE) is a multisystem progressive disease that occurs during pregnancy. Previous studies have shown that the immune system is involved in the placental trophoblast function and the pathological process of uterine vascular rem...

Machine learning prediction of breast cancer local recurrence localization, and distant metastasis after local recurrences.

Scientific reports
Local recurrences (LR) can occur within residual breast tissue, chest wall, skin, or newly formed scar tissue. Artificial intelligence (AI) technologies can extract a wide range of tumor features from large datasets helping in oncological decision-ma...

Identifying invasiveness to aid lung adenocarcinoma diagnosis using deep learning and pathomics.

Scientific reports
Most classification efforts for primary subtypes of lung adenocarcinoma (LUAD) have not yet been integrated into clinical practice. This study explores the feasibility of combining deep learning and pathomics to identify tumor invasiveness in LUAD pa...

Comparative performance of multiple ensemble learning models for preoperative prediction of tumor deposits in rectal cancer based on MR imaging.

Scientific reports
Ensemble learning can effectively mitigate the risk of model overfitting during training. This study aims to evaluate the performance of ensemble learning models in predicting tumor deposits in rectal cancer (RC) and identify the optimal model for pr...

An assessment of breast cancer HER2, ER, and PR expressions based on mammography using deep learning with convolutional neural networks.

Scientific reports
Mammography is the recommended imaging modality for breast cancer screening. Expressions of human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), and progesterone receptor (PR) are critical to the development of therapeutic strateg...

Development and Validation of a Machine Learning Algorithm for Predicting Diabetes Retinopathy in Patients With Type 2 Diabetes: Algorithm Development Study.

JMIR medical informatics
BACKGROUND: Diabetic retinopathy (DR) is the leading cause of preventable blindness worldwide. Machine learning (ML) systems can enhance DR in community-based screening. However, predictive power models for usability and performance are still being d...

Deep learning-based prediction of autoimmune diseases.

Scientific reports
Autoimmune Diseases are a complex group of diseases caused by the immune system mistakenly attacking body tissues. Their etiology involves multiple factors such as genetics, environmental factors, and abnormalities in immune cells, making prediction ...

Artificial intelligence: a useful tool in active tuberculosis screening among vulnerable groups in Romania - advantages and limitations.

Frontiers in public health
INTRODUCTION: Despite advances in diagnostic technologies for tuberculosis (TB), global control of this disease requires improved technologies for active case finding in selected vulnerable populations. The integration of artificial intelligence (AI)...

Integrating manual annotation with deep transfer learning and radiomics for vertebral fracture analysis.

BMC medical imaging
BACKGROUND: Vertebral compression fractures (VCFs) are prevalent in the elderly, often caused by osteoporosis or trauma. Differentiating acute from chronic VCFs is vital for treatment planning, but MRI, the gold standard, is inaccessible for some. Ho...