AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

ROC Curve

Showing 41 to 50 of 3115 articles

Clear Filters

Integrating machine learning and neural networks for new diagnostic approaches to idiopathic pulmonary fibrosis and immune infiltration research.

PloS one
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease with a fatal outcome, known for its rapid progression and unpredictable clinical course. However, the tools available for diagnosing and treating IPF are quite limited. T...

Proposed Comprehensive Methodology Integrated with Explainable Artificial Intelligence for Prediction of Possible Biomarkers in Metabolomics Panel of Plasma Samples for Breast Cancer Detection.

Medicina (Kaunas, Lithuania)
: Breast cancer (BC) is the most common type of cancer in women, accounting for more than 30% of new female cancers each year. Although various treatments are available for BC, most cancer-related deaths are due to incurable metastases. Therefore, th...

A deep learning-based multimodal medical imaging model for breast cancer screening.

Scientific reports
In existing breast cancer prediction research, most models rely solely on a single type of imaging data, which limits their performance. To overcome this limitation, the present study explores breast cancer prediction models based on multimodal medic...

Prediction of Clavien Dindo Classification ≥ Grade III Complications After Epithelial Ovarian Cancer Surgery Using Machine Learning Methods.

Medicina (Kaunas, Lithuania)
Ovarian cancer surgery requires multiple radical resections with a high risk of complications. The aim of this single-centre, retrospective study was to determine the best method for predicting Clavien-Dindo grade ≥ III complications using machine l...

A population based optimization of convolutional neural networks for chronic kidney disease prediction.

Scientific reports
Chronic kidney disease (CKD) is a global public health concern, and the timely detection of the disease is priceless. Most of the classical machine learning models have the major drawbacks of being unsophisticated, non-robust, and non-accurate. This ...

Construction and validation of prognostic model for ICU mortality in cardiac arrest patients: an interpretable machine learning modeling approach.

European journal of medical research
BACKGROUND: The incidence and mortality of cardiac arrest (CA) is high. We developed interpretable machine learning models for early prediction of ICU mortality risk in patients diagnosed with CA.

Identifying disease progression biomarkers in metabolic associated steatotic liver disease (MASLD) through weighted gene co-expression network analysis and machine learning.

Journal of translational medicine
BACKGROUND: Metabolic Associated Steatotic Liver Disease (MASLD), encompassing conditions simple liver steatosis (MAFL) and metabolic associated steatohepatitis (MASH), is the most prevalent chronic liver disease. Currently, the management of MASLD i...

Comparative analysis of automated foul detection in football using deep learning architectures.

Scientific reports
Automated foul detection in football represents a challenging task due to the dynamic nature of the game, the variability in player movements, and the ambiguity in differentiating fouls from regular physical contact. This study presents a comprehensi...

Interpretable machine learning model for predicting delirium in patients with sepsis: a study based on the MIMIC data.

BMC infectious diseases
OBJECTIVE: The aim of this study was to construct interpretable machine learning models to predict the risk of developing delirium in patients with sepsis and to explore the impact of delirium on the 28-day survival rate of patients.