AIMC Topic: Staphylococcus aureus

Clear Filters Showing 21 to 30 of 106 articles

Integrated epigenomic exposure signature discovery.

Epigenomics
The epigenome influences gene regulation and phenotypes in response to exposures. Epigenome assessment can determine exposure history aiding in diagnosis. Here we developed and implemented a machine learning algorithm, the exposure signature discove...

Discovery of AMPs from random peptides via deep learning-based model and biological activity validation.

European journal of medicinal chemistry
The ample peptide field is the best source for discovering clinically available novel antimicrobial peptides (AMPs) to address emerging drug resistance. However, discovering novel AMPs is complex and expensive, representing a major challenge. Recent ...

Machine Learning-Driven Discovery and Evaluation of Antimicrobial Peptides from Mucus Proteome.

Marine drugs
Marine antimicrobial peptides (AMPs) represent a promising source for combating infections, especially against antibiotic-resistant pathogens and traditionally challenging infections. However, traditional drug discovery methods face challenges such a...

VacSol-ML(ESKAPE) Machine learning empowering vaccine antigen prediction for ESKAPE pathogens.

Vaccine
The ESKAPE family, comprising Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp., poses a significant global threat due to their heightened virulence and extensiv...

Capabilities of GPT-4o and Gemini 1.5 Pro in Gram stain and bacterial shape identification.

Future microbiology
Assessing the visual accuracy of two large language models (LLMs) in microbial classification. GPT-4o and Gemini 1.5 Pro were evaluated in distinguishing Gram-positive from Gram-negative bacteria and classifying them as cocci or bacilli using 80 Gra...

In silico method and bioactivity evaluation to discover novel antimicrobial agents targeting FtsZ protein: Machine learning, virtual screening and antibacterial mechanism study.

Naunyn-Schmiedeberg's archives of pharmacology
This research paper utilizes a fused-in-silico approach alongside bioactivity evaluation to identify active FtsZ inhibitors for drug discovery. Initially, ROC-guided machine learning was employed to obtain almost 13182 compounds from three libraries....

Discovery of Antimicrobial Lysins from the "Dark Matter" of Uncharacterized Phages Using Artificial Intelligence.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
The rapid rise of antibiotic resistance and slow discovery of new antibiotics have threatened global health. While novel phage lysins have emerged as potential antibacterial agents, experimental screening methods for novel lysins pose significant cha...

Identifying and characterization of novel broad-spectrum bacteriocins from the Shanxi aged vinegar microbiome: Machine learning, molecular simulation, and activity validation.

International journal of biological macromolecules
Shanxi aged vinegar microbiome encodes a wide variety of bacteriocins. The aim of this study was to mine, screen and characterize novel broad-spectrum bacteriocins from the large-scale microbiome data of Shanxi aged vinegar through machine learning, ...

Biomimetic piezoelectric nanomaterial-modified oral microrobots for targeted catalytic and immunotherapy of colorectal cancer.

Science advances
Lactic acid (LA) accumulation in the tumor microenvironment poses notable challenges to effective tumor immunotherapy. Here, an intelligent tumor treatment microrobot based on the unique physiological structure and metabolic characteristics of (VA) ...