The ESKAPE family, comprising Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp., poses a significant global threat due to their heightened virulence and extensiv...
Assessing the visual accuracy of two large language models (LLMs) in microbial classification. GPT-4o and Gemini 1.5 Pro were evaluated in distinguishing Gram-positive from Gram-negative bacteria and classifying them as cocci or bacilli using 80 Gra...
Naunyn-Schmiedeberg's archives of pharmacology
Jul 23, 2024
This research paper utilizes a fused-in-silico approach alongside bioactivity evaluation to identify active FtsZ inhibitors for drug discovery. Initially, ROC-guided machine learning was employed to obtain almost 13182 compounds from three libraries....
Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Jun 20, 2024
The rapid rise of antibiotic resistance and slow discovery of new antibiotics have threatened global health. While novel phage lysins have emerged as potential antibacterial agents, experimental screening methods for novel lysins pose significant cha...
International journal of biological macromolecules
May 9, 2024
Shanxi aged vinegar microbiome encodes a wide variety of bacteriocins. The aim of this study was to mine, screen and characterize novel broad-spectrum bacteriocins from the large-scale microbiome data of Shanxi aged vinegar through machine learning, ...
Lactic acid (LA) accumulation in the tumor microenvironment poses notable challenges to effective tumor immunotherapy. Here, an intelligent tumor treatment microrobot based on the unique physiological structure and metabolic characteristics of (VA) ...
INTRODUCTION: Antimicrobial peptides (AMPs) are valuable alternatives to traditional antibiotics, possess a variety of potent biological activities and exhibit immunomodulatory effects that alleviate difficult-to-treat infections. Clarifying the stru...
Increasing antimicrobial resistance (AMR) represents a global healthcare threat. To decrease the spread of AMR and associated mortality, methods for rapid selection of optimal antibiotic treatment are urgently needed. Machine learning (ML) models bas...
BACKGROUND: The rapid advancement of next-generation sequencing (NGS) machines in terms of speed and affordability has led to the generation of a massive amount of biological data at the expense of data quality as errors become more prevalent. This i...
OBJECTIVE: To build and merge a diagnostic model called multi-input DenseNet fused with clinical features (MI-DenseCFNet) for discriminating between Staphylococcus aureus pneumonia (SAP) and Aspergillus pneumonia (ASP) and to evaluate the significant...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.