AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Structure-Activity Relationship

Showing 1 to 10 of 225 articles

Clear Filters

1,3,4-oxadiazole derivatives: synthesis, characterization, antifungal activity, DNA binding investigations, TD-DFT calculations, and molecular modelling.

Journal of biomolecular structure & dynamics
1,3,4-Oxadiazole-based heterocyclic analogs (3a-3m) were synthesized cyclization of Schiff bases with substituted aldehydes in the presence of bromine and acetic acid. The structural clarification of synthesized molecules was carried out with variou...

Identification of nanoparticle infiltration in human breast milk: Chemical profiles and trajectory pathways.

Proceedings of the National Academy of Sciences of the United States of America
Breast milk is crucial for infant health, offering essential nutrients and immune protection. However, despite increasing exposure risks from nanoparticles (NPs), their potential infiltration into human breast milk remains poorly understood. This stu...

Data-Driven Insights into Porphyrin Geometry: Interpretable AI for Non-Planarity and Aromaticity Analyses.

Journal of chemical information and modeling
Porphyrins are involved in numerous and very different chemical and biological processes, due to the sensitivity of their application-relevant properties to subtle structural changes. Applying modern machine learning methodology is very appealing for...

Developing predictive models for µ opioid receptor binding using machine learning and deep learning techniques.

Experimental biology and medicine (Maywood, N.J.)
Opioids exert their analgesic effect by binding to the µ opioid receptor (MOR), which initiates a downstream signaling pathway, eventually inhibiting pain transmission in the spinal cord. However, current opioids are addictive, often leading to overd...

High-Accuracy Identification and Structure-Activity Analysis of Antioxidant Peptides via Deep Learning and Quantum Chemistry.

Journal of chemical information and modeling
Antioxidant peptides (AOPs) hold great promise for mitigating oxidative-stress-related diseases, but their discovery is hindered by inefficient and time-consuming traditional methods. To address this, we developed an innovative framework combining ma...

Structural Similarity, Activity, and Toxicity of Mycotoxins: Combining Insights from Unsupervised and Supervised Machine Learning Algorithms.

Journal of agricultural and food chemistry
A large number of mycotoxins and related fungal metabolites have not been assessed in terms of their toxicological impacts. Current methodologies often prioritize specific target families, neglecting the complexity and presence of co-occurring compou...

Rational design and synthesis of pyrazole derivatives as potential SARS-CoV-2 M inhibitors: An integrated approach merging combinatorial chemistry, molecular docking, and deep learning.

Bioorganic & medicinal chemistry
The global impact of SARS-CoV-2 has highlighted the urgent need for novel antiviral therapies. This study integrates combinatorial chemistry, molecular docking, and deep learning to design, evaluate and synthesize new pyrazole derivatives as potentia...

Machine Learning-Driven Discovery of Structurally Related Natural Products as Activators of the Cardiac Calcium Pump SERCA2a.

ChemMedChem
A key molecular dysfunction in heart failure is the reduced activity of the cardiac sarcoplasmic reticulum Ca-ATPase (SERCA2a) in cardiac muscle cells. Reactivating SERCA2a improves cardiac function in heart failure models, making it a validated targ...

A deep learning model for structure-based bioactivity optimization and its application in the bioactivity optimization of a SARS-CoV-2 main protease inhibitor.

European journal of medicinal chemistry
Bioactivity optimization is a crucial and technical task in the early stages of drug discovery, traditionally carried out through iterative substituent optimization, a process that is often both time-consuming and expensive. To address this challenge...

Discovery of naturally inspired antimicrobial peptides using deep learning.

Bioorganic chemistry
Non-ribosomal peptides (NRPs) are promising lead compounds for novel antibiotics. Bioinformatic mining of silent microbial NRPS gene clusters provide crucial insights for the discovery and de novo design of bioactive peptides. Here, we describe the e...